
Using Virtualisation to Protect
Against Zero-Day Attacks

Copyright c© 2010 by Georgios Portokalidis

VRIJE UNIVERSITEIT

Using Virtualisation to Protect
Against Zero-Day Attacks

ACADEMISCH PROEFSCHRIFT

ter verkrijging van de graad Doctor aan
de Vrije Universiteit Amsterdam,
op gezag van de rector magnificus

prof.dr. L.M. Bouter,
in het openbaar te verdedigen

ten overstaan van de promotiecommissie
van de faculteit der Exacte Wetenschappen
op donderdag 25 februari 2010 om 13.45 uur

in de aula van de universiteit,
De Boelelaan 1105

door

Georgios Portokalidis

geboren te Alexandoupoli, Griekenland

promotor: prof.dr.ir. H.E. Bal
copromotor: dr.ir. H.J. Bos

Contents

Contents v

List of Figures ix

List of Tables xi

Acknowledgements xiii

1 Introduction 15
1.1 The Problem . 16
1.2 Goals . 18
1.3 Contributions . 19
1.4 Thesis Organisation . 20

2 Background 21
2.1 Software Errors . 21

2.1.1 Buffer Overflows . 22
2.1.2 Format String Errors 23

2.2 Attacks . 24
2.2.1 Attack Types . 25
2.2.2 Self-propagating Malware 26
2.2.3 Payload . 27

2.3 Defences . 28
2.3.1 Safe Programming Languages 28
2.3.2 Compiler Extensions 29
2.3.3 Static Analysis . 30
2.3.4 Dynamic Analysis . 30
2.3.5 Honeypots . 32
2.3.6 Network Intrusion Detection & Prevention Systems . . 33
2.3.7 Operating Systems . 34

vi CONTENTS

3 Argos Secure Emulator 37
3.1 Introduction . 37
3.2 Related Work . 39
3.3 Design . 41
3.4 Implementation . 44

3.4.1 Extended Dynamic Taint Analysis 44
3.4.2 Signature Generation 49

3.5 Evaluation . 56
3.5.1 Performance . 56
3.5.2 Effectiveness . 58
3.5.3 Signatures . 59

3.6 Systems Using Argos . 61
3.7 Conclusion . 62

4 Eudaemon: On-demand Protection of Production Systems 65
4.1 Introduction . 65
4.2 Related Work . 69
4.3 Design . 71

4.3.1 Process Possession . 73
4.3.2 Process Release . 75
4.3.3 Emulator Library . 75

4.4 Implementation . 76
4.4.1 SEAL: A Secure Emulator Library 76
4.4.2 Possession and Release 81

4.5 Evaluation . 86
4.5.1 SEAL . 86
4.5.2 Eudaemon . 87

4.6 Conclusions . 89

5 Decoupled Security for Smartphones 91
5.1 Introduction . 91
5.2 Threat Model and Example Configuration 96
5.3 Architecture . 96

5.3.1 A Naive Implementation: Sketching the Basic Idea . . 97
5.3.2 Location of the Security Server 98
5.3.3 When to Transmit Trace Data 99
5.3.4 Notifying the User of an Attack 99

5.4 Recording in Practice . 100
5.4.1 Tracing on Android 100
5.4.2 Pruning Redundant Data: Trimming the Trace 104
5.4.3 Secure Storage . 107

CONTENTS vii

5.4.4 Local Data Generation 108
5.5 The Security Server . 108
5.6 Results . 109

5.6.1 Data Generation Rate 109
5.6.2 Battery Consumption 110
5.6.3 Performance . 111
5.6.4 Security Server Lag 112

5.7 Related Work . 113
5.8 Conclusion . 114

6 Conclusion 117
6.1 Results . 117
6.2 Limitations and Future Work 118

Bibliography 135

Publications 137

Sammenvatting 139

viii CONTENTS

List of Figures

1.1 Code size of Windows operating systems 16

2.1 Example of stack overflow . 22
2.2 Typical heap structure . 23
2.3 Example call of printf function 24

3.1 Argos: high-level overview . 42
3.2 Memory dump format . 50
3.3 Architecture of the SweetBait subsystem 54
3.4 SweetBait signature specialisation results 54
3.5 Performance Benchmarks . 58
3.6 Signature generation . 61
3.7 Signature Specialisation (snort format) 63

4.1 Eudaemon overview . 72
4.2 Process memory layout . 73
4.3 Process possession: phase 1 81
4.4 Contents of a /proc/[pid]/maps file 82
4.5 Process possession: phase 2 83
4.6 Process release: phase 1 . 84
4.7 Process release: phase 2 . 85
4.8 Scaling of process possession 88

5.1 Marvin architecture . 94
5.2 Tracing the processes from init 101
5.3 Scheduler FSM . 102
5.4 Data generation rate . 109
5.5 Battery consumption . 111
5.6 CPU load average . 112
5.7 Security server lag . 112

x LIST OF FIGURES

List of Tables

3.1 Apache throughput . 57
3.2 Exploits captured by Argos 60

4.1 Emulation overhead . 86
4.2 Eudaemon micro-timings (msec) 88

5.1 Time spent in various parts of the tracer 112

xii LIST OF TABLES

Acknowledgements

I would like to start by thanking my adviser, Herbert Bos, for guiding and
supporting me all these years, as well as for all the philosophic discussions
we had on occasion. I would also like to thank my promoter, Henri Bal, who
has been very supportive, and even seemed more excited than I was when
this thesis was approved.

I am also very grateful for having some of the leading researchers in the
field in the committee reviewing this thesis. Thanks to Manuel Costa, Marc
Dacier, Sandro Etalle, Engin Kirda, and Andrew Tanenbaum.

Last but not least, I want to thank my family for supporting me through-
out this endeavour.

Chapter 1

Introduction

Operating systems and software in general, continuously grow in size and
complexity. As a result, software contains programming errors that frequently
allow attackers to gain illegitimate access, and even fully control systems. In
the past, we witnessed large scale infections from worms such as CodeRed [39],
Blaster [9], and Sasser [142] that managed to infect hundreds of thousands of
hosts, while the Slammer [40] worm exhibited phenomenal speed in infecting
almost every vulnerable server in minutes. More recently, we saw attackers
exploiting bugs in popular applications, such as web browsers, to take control
and organise compromised systems into large collections of networks that are
used for sending spam, carrying out distributed denial of service (DDoS) at-
tacks, and extracting personal information (credit card numbers, passwords,
etc).

Current solutions have been able to alleviate the problem partially, but
in practice have proven inadequate in detecting attacks and generating coun-
termeasures in a timely manner.

This dissertation addresses the problem of automatically and reliably de-
tecting previously unknown attacks, and generating vaccines that can deter
new infections in their early stages. We present three novel ways of using
virtualisation to detect zero-day attacks, and automatically generate coun-
termeasures. Our solutions are based on a technique called dynamic taint-
analysis, used to capture the most prominent self-propagating attacks. Most
importantly, they apply to legacy hardware and software, and generate no
false positives.

First, we describe the design and implementation of Argos. Argos is a
secure x86 emulator able to identify unknown attacks, and automatically
extract information after the detection of an attack to generate countermea-
sures. Second, we introduce a new technique dubbed Eudaemon that blurs
the borders between protected and unprotected applications on desktop sys-

16 Introduction

0

10

20

30

40

50

Date of Introduction
1993 1994 1996 2000 2001 2007

M
LO

C

0

10

20

30

40

50

NT 3.1

NT 3.5

NT 4

Windows 2000

Windows XP

Windows Vista

Figure 1.1: Code size of Windows operating systems

tems using on-demand emulation. Third, we address the problem of provid-
ing a similar level of protection to lightweight devices such as smartphones,
overcoming their limited resources.

1.1 The Problem

Computer systems have evolved dramatically through time. CPU, memory,
and storage have improved significantly. Software has admittedly not har-
nessed the full potential of available hardware, but it has undoubtedly grown
in size and complexity, as shown in Fig. 1.1. Producing highly complex soft-
ware is difficult. Hence, software frequently contains programming errors
that exhibit themselves as crashes or unexpected behaviour. Fault distribu-
tion studies show that there is a correlation between the number of lines of
code and the number of faults [88, 11, 114, 115]. To quantify this, it is ap-
proximated that code contains 6-16 bugs per 1000 lines of executable code.
Attackers are often able to exploit certain types of program faults to circum-
vent security measures introduced by design to protect a system. Reports by
organisations such as SANS1, and various CERTs2 show that there is large
number of such vulnerabilities.

1http://isc.sans.org The Internet Storm Center was created by SANS in 2001 as a
response to an increasing number of malicious attacks.

2Computer Emergency Response or Readiness Teams have been formed by governments
and non-profit organisations around the world to analyse the state of Internet security and
to provide emergency response support.

http://isc.sans.org

1.1 The Problem 17

The security implications of software faults are evident. In 2002 and 2003,
Internet worms such as CodeRed and Slammer compromised large numbers
of server systems in record times. Later on, a plethora of vulnerabilities [122]
in desktop applications were discovered and exploited to install malicious
software (malware) on millions of desktop systems. Recently, another worm
(Conficker [31, 51]) has been identified, leading a new wave of worm at-
tacks [144, 97]. Many critical networks have been compromised by the Con-
ficker worm [87, 60], while it is speculated that millions systems have been
infected in total.

Eliminating the errors that enable such attacks has proven extremely
challenging. Static code analysis tools have greatly improved code quality
by identifying many errors before software is distributed, but are unable to
exhaust the entire space of possible execution paths [160], and thus are unable
to discover all errors. Certainly, using more secure programming languages
would significantly improve security [67]. In practice though, most system
software is written in C and C++ for reasons such as code reuse, backward
compatibility, and performance.

Current security solutions that attempt to address the problems men-
tioned above can be classified in two major categories: (a) network security,
and (b) host security. The first focuses on deploying countermeasures in the
network, in an attempt to identify and filter (when possible) malicious net-
work flows. The latter, aims to identify and block exploit attempts at the
host level, where the attack actually takes place. Both approaches have had
positive results, but also display many weakness that we will briefly attempt
to sketch. Extensive discussion of current security approaches is presented in
Chapter 2.

Security in the network is based on observing the data being trafficked.
The observations can be either behavioural, or content based. The increas-
ing use of encryption on the network, as well as attackers intentionally en-
crypting or encoding their attack payloads greatly subverts network intrusion
detection systems (NIDS). Additionally, using behavioural traits of attacks
for identification is also becoming harder, as worm propagation can be dis-
guised as peer-to-peer traffic, and attackers switch to slower and stealthier
spreading policies. In practice, network solutions are rarely used for filtering
malicious data from the network, because of their low accuracy that frequently
results in falsely classifying benevolent traffic as malicious (false-positives),
and vice-versa (false-negatives). Instead, they are limited in passively moni-
toring network traffic, and logging potential threats, which need to be evalu-
ated manually at a later time before taking any action.

Host security solutions come in much greater variety. The most commonly
found solution is an anti-virus system, where file system and memory data are

18 Introduction

scanned for known patterns or signatures. Such systems face the same prob-
lems as NIDS, but are more accurate especially with regard to false positives.
Hardening software security by recompiling software using various types of
security extensions, attempts to harden security of already available source
code, and keep the performance overhead low. Unfortunately, depending on
the strength of the extension such approaches have been either defeated (e.g.,
stack smashing compilers extensions [21, 72, 150] can be circumvented [19]),
or have been incompatible with large parts of available software (e.g., they
are unable to work with dynamic libraries not compiled with the same ex-
tension [1]). The lack of source code for proprietary software is also greatly
restricting the applicability of compiler based solutions.

Runtime (host) solutions seek to take advantage of the wealth of informa-
tion that is available when a system is actually running to protect against at-
tacks on program errors. The majority of these solutions are very accurate in
detecting certain types of attacks. Virtualisation is often used to deploy them,
since it provides the needed isolation and transparency. Their main disadvan-
tage is the significant performance overhead they impose, which makes them
inappropriate for production systems. For instance, dynamic taint analysis
as proposed by Dening et al [42] and later implemented in TaintCheck [107] is
able to accurately detect and stop the exploitation of the majority of memory
corruption vulnerabilities such as stack and heap overflows (see Section 2.1.1),
but can cause the protected application to run up to 25 times slower. Efforts
have been made to mitigate the overhead of such solutions, but they usually
require specialised hardware or software.

Solutions in both categories that are based on signatures to detect attacks
are also confronted by another problem: the timely generation of signatures
for new and constantly evolving known attacks. Currently, signatures are
produced manually by experts, after the identification of a new virus, worm,
or other type of malware. History has shown that humans are not fast enough
to counter certain attacks. For instance, the Slammer worm was able to
infect the entire population of accessible and vulnerable hosts in 30 minutes,
while researchers have argued that the creation of a “flash” worm that can
accomplish the same feat in even less time is possible [139].

1.2 Goals

The main goal of this thesis is to investigate virtualisation-based solutions
to protect commodity systems against zero-day attacks. Particularly, we
focus on attacks that divert the control flow of a program, or inject arbitrary
instructions in its flow, or both, after exploiting memory access errors in
software (explained in Section 2.1). All the worms we have referred to thus

1.3 Contributions 19

far have exploited such vulnerabilities on their victims.
The ability to automatically identify and analyse new attacks is critical

for new solutions, as manual analysis is time consuming, and does not scale.
Past worm outbreaks have shown that human intervention can be overly
slow, while the constantly increasing number of malware collected by anti-
virus vendors [117] shows that the cost of manual analysis may be too high
in the future (if not already prohibitive). The increasing number of varying
attacks seen by vendors can be attributed to attackers using code obfusca-
tion techniques (such as polymorphism discussed in Section 2.2.3) to evade
detection, which only intensifies the problem.

The unsupervised detection of zero-day attacks, requires an accurate de-
tection technique, especially one with few or no false-positives. Dynamic
taint analysis (explained in detail in Section 2.3.4) is such a technique. It is
based on tracking the data flow of possibly dangerous data to detect attacks
such as control-flow diversion that we mentioned earlier. An implementation
of the technique in software requires a virtualisation layer, such as an emula-
tor or a dynamic binary translation framework, and usually incurs a massive
performance overhead in the range of 1000%-2000%. This thesis will attempt
to take on the challenges involved with applying dynamic taint analysis on
existing systems.

Computing systems can vary significantly in hardware, software, and in
the ways they are used. For instance, server and desktop systems follow
very different usage patterns, while smartphone hardware and software can
be entirely dissimilar. Furthermore, we cannot assume that access to soft-
ware source code is possible, as frequently proprietary or legacy software is
deployed on these systems. These differences pose extra challenges when
designing an out-of-the-box solution for immediate use on these systems.

The goals of this thesis can be summarised in the following research ques-
tions:

Question 1. Can we find solutions for detecting zero-day attacks, by means
of dynamic data-flow tracking, in unmodified software, and without requiring
access to source code or specialised hardware?

Question 2. Can we mitigate the performance overhead imposed by dynamic
data-flow tracking to scale our solutions to varying computing systems, such
as servers, desktops, and smartphones?

1.3 Contributions

The concrete contributions of this thesis can be summarised into the follow-
ing:

20 Introduction

• We created a platform for the next generation high-interaction honeypots
that automates the procedure of capturing zero-day attacks, and gen-
erates a simple “vaccine” for deployment on NIDS (Chapter 3).

• We developed a technique that transparently enables desktop systems
to act as honeypots. Our technique is able to overcome the issues
of honeypot avoidance, and can detect client-side exploits, to protect
desktop applications from attacks and generate signatures for NIDS
(Chapter 4).

• We address the problem of protecting light-weight devices such as smart-
phones by delegating security checks to a loosely synchronised replica.
By outsourcing security checks we enable the application of heavy-
weight security checks such as the ones used on honeypots, and at the
same time transparently offer backup functionality (Chapter 5).

Our honeypot platform has also found its way in multiple intrusion detec-
tion systems, maintained both by research and industrial institutions. Such
systems are SURFids [141], SGNET [85], and Honey@Home [7].

1.4 Thesis Organisation

The rest of this book is organised as follows, In Chapter 2, we offer some
background information on attack techniques, and current intrusion and pre-
vention systems. There, we also review previous work on the detection of
unknown attacks, and the automatic generation of “vaccines”. In Chapter 3,
we present Argos a secure emulator for use in high-interaction honeypots,
and show how it can be used for the automatic generation of signatures for
NIDS. Following, we present Eudaemon in Chapter 4. Eudaemon is able
to transparently transform desktop systems to honeypots by employing on
demand protection to alleviate performance costs. In Chapter 5, we focus
on smartphones and propose a new design that applies security checks on a
loosely synchronised replica of the device overcoming the resource limitations
of these devices. Finally, we conclude in Chapter 6.

Chapter 2

Background

This chapter elaborates on three subjects that will assist the reader to better
comprehend the remainder of this thesis: the software errors responsible for
the majority of attacks, the most frequently encountered attack types, and
finally the solutions developed as responses to these attacks. We will also
discuss related work throughput this chapter.

2.1 Software Errors

Software errors, commonly referred to as bugs, have been the primary cause of
most security vulnerabilities in recent times. They mainly arise from mistakes
made by developers when coding programs, or can be the result of faulty
designs. Less frequently, bugs can be introduced by a compiler that produces
incorrect binary code even when given sound source code.

Software bugs can be extremely hard to detect, and do not always present
themselves when running a program, as they are often only triggered by spe-
cific input. It comes as no surprise that software vendors subject their soft-
ware to extensive testing procedures, in an attempt to discover and eliminate
them. While testing has improved significantly, not all vendors can afford
long and expensive debugging cycles for their software. Additionally, the de-
bugging process itself is imperfect. As any average computer user can attest
to, bugs always find their way on every system.

Unsolved bugs eventually cause programs to exhibit unexpected behaviour.
This frequently results in a program crashing or freezing (i.e., it no longer
functions but appears running). At other times, the program behaviour is al-
tered without terminating (e.g., corrupted data are written to a file), keeping
the error concealed.

There are various types of programming bugs, for instance mathematical
bugs (i.e., division by zero), logic bugs (i.e., infinite recursion), and concur-

22 Background

Stack
grows
towards
the
bottom

*srcstr

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

0xffffffff

0

dststr

Writes
direction

Return address
Old EBP

 function(const char *srcstr)
 {

 char dststr[1024];

 int authorized; authorized

 authorized = 0;

 }

 return authorized;

 strcpy(dststr, srcstr);

Figure 2.1: Example of stack overflow

rency bugs (i.e., race conditions). The most severe bugs from a security
perspective are memory errors.

Memory errors are caused when the “wrong” memory location is accessed.
That is a different location from the one originally intended by the program-
mer. When such an error occurs, the program will most probably terminate,
because the accessed memory page does not exist (e.g., a null pointer deref-
erence), or the program does not have the appropriate rights to access an
existing page. On the other hand, if the location is valid, the program will
not terminate, and the data on that location will be used or erroneously over-
written. Such errors can occur with both read and write operations, but are
more severe in the latter case.

2.1.1 Buffer Overflows

A frequently encountered memory access error that results in storing data in
a different location than the one intended by the programmer is a buffer over-
flow. Such errors usually occur when copying data between buffers without
checking their size. Consider the function shown in Fig. 2.1 that attempts to
copy string srcstr into dststr. The programmer assumes that srcstr contains
a legitimate string that fits in dststr. If that is not the case, the standard
copy function strcpy will keep writing beyond the end of dststr, overflowing
into variable authorized and even beyond. This happens because of the way
function local variables are stored in the stack. As the stack grows from top
to bottom addresses, and most buffers are written in the opposite direction,

2.1 Software Errors 23

Control
blocks

P
R

E
V

N
E

X
T

P
R

E
V

N
E

X
TBuffer

Write direction

Buffer Buffer

Figure 2.2: Typical heap structure

overflowing a buffer will overwrite the values following the buffer.
Buffer overflows are also possible in the heap. Fig. 2.2 shows the typical

structure of a process’s heap. Heap objects are allocated successively in the
process’s data segment, along with small prefix or suffix control blocks (e.g.,
pointers to the previous and next used or free heap object) used for the
management of the heap. Thus, an overflow of a heap buffer will result in
overwriting the control blocks. When a memory management function such
as free() is called, the heap lists containing used and free buffers are updated
using the control blocks (e.g., heapobj → next → prev = heapobj → prev),
resulting in an illegal overwrite of an arbitrary location.

2.1.2 Format String Errors

A less common memory error can occur when an invalid format string is used
with the printf(format, ...) family of functions. These functions produce
string output that can be printed in standard output, or written to a string
buffer or a file. The output is created according to the string in the format
argument. The function accepts a variable number of arguments, which are
stored in the stack. As the format string is processed, the arguments are
retrieved from the stack to produce the output. Fig. 2.3 shows a simple
invocation that will print the contents of string str followed by a new-line
character.

A memory error occurs when the number of arguments supplied to one
of these functions, does not satisfy the format string. For instance, if fmt =
”%s −%s” in the example in Fig. 2.3, the function will attempt to retrieve
two pointers to strings and print them to standard output. As only a single
argument is provided, printf will print whatever the bytes stored in the stack
after str point to.

Incorrect format strings can also lead to invalid writes when the flag %n
is included. This flag causes printf to store the number of characters that
have been produced into the next argument in stack, which is interpreted as
a pointer to an integer. Such errors can result to writes to arbitrary locations
in memory.

24 Background

Stack
grows
towards
the
bottom

fmt = "%s\n";

printf(fmt, str);

����������
����������
����������

����������
����������
����������

0xffffffff

0

*fmt
*str

Return address
Old EBP

Figure 2.3: Example call of printf function

2.2 Attacks

Attacks against computer systems do not always rely on faulty software for
their success. Attackers often rely on gullible users to open seemingly in-
nocent attachments sent by email, which are in fact malicious executables.
Furthermore, malware frequently masquerades as useful programs, offered
freely over the web or peer-to-peer (P2P) file sharing systems to entice users
looking for pirated software to download and execute them. Such approaches
have long been used by virus writers, and proved to be very successful.

Nevertheless, such attacks are made possible because usability is more
important than safety on the inflicted systems. For instance, on a highly-
secure “hardened” system it might be impossible for users to download and
run any other program besides the ones pre-installed on their system. This
thesis does not focus on such attacks, so this section will only focus on attacks
exploiting software bugs such as the ones we described earlier in Section 2.1.

A bug consists a vulnerability, if it can be triggered by means of sup-
plying certain input. As bugs frequently manifest themselves as crashes, a
malicious user would then be able to crash the application or service. De-
pending on the error at hand, more carefully crafted input could enable an
attacker to take complete control of a program, install malicious programs,
extract confidential information, or perform some other unintended action.

Attacks vary depending on the type of the bug being exploited, and ex-
ploitation can be performed locally or remotely. Remote exploitation is possi-
ble when the input that triggers a bug originates in the network. In the past,
such remote exploitable vulnerabilities have provided the launching platform
for numerous self-propagating malware attacks (most commonly referred to
as worms).

2.2 Attacks 25

2.2.1 Attack Types

Control-flow Manipulation

One of the most powerful attacks is performed by altering or taking control
of the flow of a vulnerable program. The power of this attack lies in the
following:

1. compromising a process with administrator privileges offers full control
over the host

2. in the case of a remote attack, its orchestrator gains access to the vul-
nerable host

Such attacks usually exploit buffer overflows that overwrite certain critical
values in the vulnerable program to divert control. The altered values may
belong in two categories: control data, and (less frequently) non control data.
The first refers to data that directly controls the flow of a program such as
function addresses, non immediate jump targets, and return addresses. The
latter includes program variables that hold a critical role in the program’s
logic.

Revisiting the stack overflow in Fig. 2.1, we can see how that error can be
exploited by overwriting both control and non control data. Let us assume
that the function shown determines whether a remote shell request is autho-
rised. In this case, variable authorized plays a critical role, as it determines
whether an incoming connection is authorised. By causing a buffer overflow
of dststr an attacker would thus be able to control the value of authorized,
and illegally gain access.

Alternatively, a larger overflow of the buffer would overwrite the control
data located in the stack. Function calls use the stack to store the address
(Return address) where execution should return to after the called function
completes. The calling function’s base pointer (EBP) is also stored. Over-
writing a function’s return address, allows attackers to take control of the
program when the function returns. The hijacked process is usually pointed
to an attacker controlled buffer such as dststr where assembly code is placed
to perform some action. When no such appropriate buffer exists, attackers
also resort to redirecting execution to existing code (e.g., code that launches
a shell).

Arbitrary Code Execution

The ability of an attacker to execute arbitrary code consists probably the most
powerful type of exploit. Arbitrary code execution usually goes hand-in-hand
with control-data manipulation, as in most cases the attacker needs to hijack

26 Background

the program’s control flow to get the code executed. Frequently, the attacked
buffer is used as a placeholder for the attacker-supplied code, but this does
not need be the case. Instances of attacks where multiple buffers were used,
or the code was injected at an earlier stage have also been observed.

2.2.2 Self-propagating Malware

A particularly malicious threat against computer systems is that of self-
propagating malware or worms. Internet worms such as CodeRed, Blaster,
and Sasser have created havoc in the past, while recently the Conficker worm
has also made the news on various occasions by infecting various high-profile
targets [87, 60]. Worms are malicious code that use various infection tech-
niques to compromise systems, and are able to self-replicate by locating and
compromising new targets without the user taking any action.

One of the most important properties of every worm is the way new
targets are discovered and attacked. The choice of a target can be a conscious
one, or can be strictly driven by opportunity and the desire to maximise
the impact of an attack. In the case of cyber-warfare the systems of the
“enemy” are intentionally targeted, while in the past most computer worms
targeted Windows systems because an opportunity was present (in the form
of vulnerable system services), and the popularity of the OS guaranteed wide
impact.

From a technical point of view, target discovery deals with the ways worms
discover and attack the largest number of vulnerable systems. Some means
to achieve this are:

• Scanning was until recently the most prominent way of searching for
vulnerable targets. The simplicity of the method is probably the reason
behind its broad use. A random number generator is used to generate
IP addresses that are consequently probed and attacked. The task
of scanning the entire IP address space is not a trivial one, and it is
frequently performed in a distributed fashion by having already com-
promised hosts also scan for new targets. The advent of IPv6, and
the extended use of network address translation (NAT) has somewhat
limited the effectiveness of scanning.

• Hit-lists of possibly vulnerable targets could allow worms to overcome
the issues involved with scanning, but obtaining such a list requires
more effort from attackers. It can be automatically generated using
freely available services that offer meta-information on systems running
a particular service. For instance, search engines have been used to
discover web sites running particular software [109], while J. Kannan et

2.2 Attacks 27

al [77] showed how the distributed hash table (DHT) of a peer-to-peer
(P2P) network can be used to acquire targets when attacking such a
network.

• Malicious or infected servers have been broadly used, in recent years,
to identify and infect vulnerable systems. Attackers set up their own
servers, and then attempt to lure possible victims to access their servers.
Alternatively, vulnerabilities on popular servers are exploited to inject
attacks. Consequently, users accessing these servers face the danger of
being infected.

2.2.3 Payload

The program that implements the desired functionality of any malware, be-
sides the infection of the target, is the payload. The payload of an attack
is also called shellcode for historical reasons, as it was frequently used by
attackers to acquire a remote shell on the compromised system. The terms
payload and shellcode are used interchangeably in this thesis.

The first malware were relatively mild with nonexistent payloads, or pay-
loads that only intended to annoy users. Not all malware has been that
innocent though. Some of the most malignant viruses of the past have made
entire systems inoperable by damaging hardware, or destroying critical sys-
tem files. In general payloads are very flexible, and are only limited by the
creativity and ability of their authors.

In recent years, stealing valuable user information has been one of the
primary targets of attackers. Programs known as keyloggers or trojans are
frequently installed on compromised systems to capture every user key stroke.
The goal is to capture user passwords, and other sensitive information such as
PIN, social security, and credit card numbers. The acquired data are directly
used by attackers, or traded in what has come to be a flourishing underground
economy [145].

Payloads are frequently obfuscated to conceal their presence on the in-
fected system, and avoid detection from antivirus engines. Various stealth
mechanisms are employed to achieve concealment:

• Encryption using a variable key can obfuscate most of the payload.
Only a small part of the payload, which contains a decryption module,
remains immutable amongst instances.

• Polymorphism improves on encryption by also modifying the small de-
coder module between instances. This is achieved by using a polymor-
phic engine that produces different decoding modules with the same
effect.

28 Background

• Metamorphism involves modifying the entire payload on each infection
without using encryption. A metamorphic engine produces different
payloads that achieve the same goal. Payloads that employ metamor-
phism are larger, as they also include the engine responsible for rewrit-
ing themselves.

2.3 Defences

In response to the threats we have described in the above sections, a multitude
of defences have been proposed and many times implemented. The proposed
solutions vary, focusing on different aspects of computer systems such as
programming languages, networking, operating systems, etc. In this section,
we will attempt to present (according to our position) the most significant
defences developed by the security community, analysing their demonstrated
advantages and shortcomings.

2.3.1 Safe Programming Languages

Safe languages attempt to strengthen security by addressing the route cause
of most attacks, which as we have already explained comes from programming
errors. Unsafe programming languages such as C and C++, albeit power-
ful and flexible, depend on the developer to make the right decisions and
follow proper practices to write error free code. Experience has shown that
programmers do and will make errors [11], and as such new programming
languages that eliminate errors such as buffer overflows are needed.

Consequently, safer languages such as Cyclone [75], Java [59] and C# [96]
were developed. Even though different approaches are taken by these lan-
guages, all of them offer protection against memory errors that would other-
wise be possible with C or C++. The immunity to such errors emerges mainly
from two facts: most (if not all) safe languages are strongly typed [24], and
perform bounds checking when accessing arrays. The checks are usually per-
formed by code that is introduced by the compiler when producing the binary,
and in the case of Java they can also be applied at runtime by the VM.

Java and C# have seen broad adoption in certain areas, such as the sci-
entific community and the World Wide Web (JSP and ASP powered web
services respectively). Unfortunately, little penetration has been seen in ar-
eas that have suffered much from attacks, like popular desktop applications
(browsers, e-mail clients, etc), operating systems (kernel drivers) and ser-
vices (background daemons), or high-performance servers (web, database,
etc). Initially, performance was considered the greatest disadvantage of using
safe languages, but as they matured and processing power increased other

2.3 Defences 29

obstacles surfaced. As the larger part of existing software is written in C and
C++, code reuse and backwards compatibility forms another barrier in the
mass adoption of safer programming alternatives. This argument seems to be
validated when looking at the latest releases of popular browser applications
such as Internet Explorer, Google Chrome, and Mozilla Firefox, where the
bulk of the code is written in C++.

2.3.2 Compiler Extensions

Security-oriented compiler extensions attempt to “patch” unsafe program-
ming languages against certain types of attacks. The programming language
is not altered in any way, instead security mechanisms are augmented in
produced code. Most extensions do not alter the behaviour of the resulting
executable, which is usually larger in size. Compiler extensions usually incur
low overheads and enable code reuse, but as the “patched” programming lan-
guage is not immune to these faults, programs compiled with such extensions
usually terminate whenever an attack is detected.

Some of the first compiler extensions were developed to protect against
stack overflows, which until recent years were the most frequently exploited
vulnerabilities. Stackguard [21], ProPolice [72], and StackShield [150] are
three such extensions that use similar techniques based on inserting a special
value, called a canary, in the stack between control data and local variables.
The code generated by the extension checks for altered canary values to de-
tect overflows. These or similar extensions have found their way in popular
developer toolchains like GCC and Microsoft Visual Studio. However, they
can be overcome [19]. Similar extensions [22, 147] have been also developed
to address format string attacks, by replacing the printf() family of func-
tions with other safe versions that perform explicit checks on the number of
arguments defined in the format string, and the one actually passed to the
function.

CRED [129] takes a different approach by checking the correctness of
memory accesses on strings. It is able to detect both stack and heap overflows,
but it is limited to string buffers, while also incurring a performance overhead
of about 26%. CCured [53] identifies possible unsafe pointer usage in C
source code, and retrofits it with runtime checks to identify illegal memory
accesses. It incurs an overhead between of 0%-150%, while detected attacks
cause target programs to terminate.

A more generic solution against all types of buffer overflows is offered by
DFI [25]. It employs the Phoenix compiler infrastructure [98] to generate a
static data-flow graph of the program being compiled, and instruments the
code to check the integrity of the program at runtime. WIT [1] extends DFI

30 Background

by introducing special values between buffers to detect overflows. It also
performs somewhat different static analysis by classifying memory areas into
colours and identifying the instructions that are associated with accessing
them. The main advantage of DFI and WIT is low performance, which is
less then 5% for the latter. Nevertheless, they both face problems when using
libraries not compiled in the same fashion.

Finally, PointGuard [23] attempts to offer broader protection against
buffer overflows by safe guarding all pointers (including stored addresses).
It accomplishes this by encrypting pointers when they are stored in memory,
and decrypting them only when they are about to be loaded on a register. It
has been incorporated in certain Windows operating systems, but in a limited
non automated way (as a developer API) to reduce performance overheads.

2.3.3 Static Analysis

Static analysis tools [76, 10, 151, 103] are similar to compiler extensions as
they operate on existing source to detect errors. The detection can take
many forms such as the generation of warnings and errors that need to be
corrected during the developing phase of software [32, 20]. Static analysis
solutions exhibit relatively low runtime performance overheads, or in the
case of tools such as coverity they are applied only during the development
and testing phase of software. Still, while software integrity undoubtedly
improves, methods depending solely on static analysis of source code are not
foolproof [161].

2.3.4 Dynamic Analysis

The security techniques presented in the above sections deliver increased secu-
rity with relatively low performance costs. However, they require that source
code is available for recompilation. In practice, source code is not always
accessible due to copyright issues, and in some rare situations (older legacy
applications and libraries) it might not be available at all. As a consequence,
a lot of the software in use is still vulnerable to the attacks we described in
the beginning of this chapter.

Dynamic analysis techniques focus on protecting applications and sys-
tems without requiring any changes to the target applications and/or OS
being protected. They achieve this by transparently modifying the runtime
environment (frequently using virtualisation). Many of these techniques are
also frequently OS agnostic i.e., they are not bound to a specific OS. As
such, they can be applied to different systems with little effort. On the other
hand, performance costs are high, making them less applicable for production
systems.

2.3 Defences 31

An interesting approach against all code injection attacks, proposes the
randomisation of the CPU instruction set using emulation and a well designed
random generator to eliminate the possibility of an attacker discovering the
instruction set used at any given point [48, 78, 71]. Instruction set randomisa-
tion constitutes mostly a proof of concept solution, as the incurred overhead is
prohibitive for practical use. The overhead could be alleviated if the solution
is implemented on hardware, a challenging and costly endeavour. Addition-
ally, this approach is unable to counter attacks that redirect program flow to
existing code (e.g., return-to-libc attacks) instead of injecting code.

Other solutions [42] are based on the observation that to successfully
compromise a system, an attacker needs to manipulate certain critical control
values as shown in Section 2.2. According to this rationale and assuming that
the attackers do not have local access on the targeted system, detection of
an attack is performed by tracking network data as soon as they enter a
system and scanning for their use as control data (function pointers, return
addresses, branches, etc). To accurately track network data, which in this
context are considered tainted, per instruction instrumentation is required
along with extra memory storage to hold the appropriate taint flags. Systems
implementing what is most frequently called as dynamic taint analysis employ
emulation to perform the instruction instrumentation, and as such also incur
relatively high overheads.

One of the first practical systems using taint tracking is Minos [33], which
proposes the tracking of data in hardware, and implements a proof of concept
solution on the Bochs [83] emulator. It optimises for an actual hardware im-
plementation, focusing on minimising the number of additional circuits and
memory required, and imposing little processing overhead. Its implementa-
tion on Bochs on the contrary, incurs a significant slowdown.

A slightly different approach is taken by TaintCheck [107] and Vigi-
lante [91]. They both use process binary instrumentation frameworks that
allow the application of taint tracking per process (Valgrind [105] for Linux
and Nirvana [95] for Windows respectively). Vigilante does not stop at simply
detecting and stopping an attack, but also attempts to generate a signature
of the attack in the form of a self-certifying alert (SCA). SCAs were de-
signed for collaboration between non-trusting systems, and enable the receiv-
ing party to certify its validity (i.e., that it actually describes a real attack)
in a safe manner. Both solutions incur significant slowdowns (×20 or more),
and they are bound to a certain OS, limiting their practical use (maybe more
for TaintCheck than Vigilante, strictly because of the popularity of Windows
OSes). Finally, while SCAs are a significant contribution, they are prone
to false negatives during verification. False negatives can be caused when
the message including the attack is subjected to some type of decoding (e.g.,

32 Background

ASCII to binary), or when replaying the message is not sufficient for exploit-
ing the program (e.g., because of a challenge-response protocol mechanism).

Chen et al [27] also use taint tracking in their approach, which tracks
dereferences of tainted pointers to detect attacks. By tracking the usage
of tainted pointers, they are able to broaden the field of captured attacks
to also include non control-data being overwritten. They also propose a
hardware implementation of their system to achieve good performance, but
as later research demonstrated [137] such methods can only be applied in
a controlled environment for a short period of time, before false positives
(erroneous alerts) are generated.

2.3.5 Honeypots

Honeypots [38, 81] are idle systems that act as bait to attract attackers.
Their goal is mainly to collect data on the methods used by attackers to com-
promise a system, while less frequently they are also used to delay attacks
(tarpit). High-interaction honeypots consist of a real OS and applications
running on hardware or more commonly under a VM for easier management
and increased security. On the other hand, low-interaction honeypots expose
virtual OSes and services to attackers. Multiple hosts can be simulated by
a single low-interaction honeypot using fake network stacks to simulate dif-
ferent OSes, and scripts that perform simple protocol handling for simulated
services. Low-interaction honeypots are deployed more frequently, because
they are easier to manage and can expose multiple architectures to attackers,
but provide less information than high-interaction ones. Common practice
involves deploying honeypots to handle all or part of the dark (unused) IP
address space in the network.

Honeypots are extremely useful security tools, able to provide early warn-
ing for many types of attacks. However, they have certain disadvantages: all
network traffic received by a honeypot is considered by definition to be suspi-
cious, as the system has an idle role and its existence is not advertised. Un-
fortunately, even idle connected systems receive plenty of noise traffic, which
makes it harder for administrators to identify malicious from innocuous traf-
fic. To overcome this issue, dynamic analysis systems have been brought into
play to host high-interaction honeypots [34, 91], but have seen little practical
use due to performance or manageability reasons.

Another weakness of honeypots is that by design they favour attacks that
perform target discovery through network scans. As technologies like IPv6
and network address translation (NAT) become more popular, scanning has
become less efficient, and attackers have turned to other means to discover
targets. For instance, search engines have been used to get valid web server

2.3 Defences 33

IPs, while at the same time a major switch to attacking client applications has
occurred. The latter implies that victims are lured to access malicious servers,
rendering traditional honeypots useless. As a response, we have witnessed
the development of client-side honeypots [155, 101], which by continuously
connecting to remote servers (mostly web servers admittedly) attempt to
discover malicious ones. Deployed instances of such honeypots are increasing,
but their success is strongly bound to our ability to identify and collect a
complete list of potentially malicious servers.

2.3.6 Network Intrusion Detection & Prevention Systems

Applying security in the network has been an attractive alternative to host
security for many reasons. Most importantly, because it enables administra-
tors to secure the entire network by performing filtering at the gateway(s) of
their local LAN or WAN, constituting a less obtrusive solution. Most such
systems operate by scanning network traffic for known patterns or signa-
tures that identify attacks, while others aim to identify anomalies in network
traffic.

Signature Based Detection

Snort [127] and Bro [119] are the main representatives of systems using a
database of signatures to detect potential intrusions. Both of these systems,
and especially Snort, are being used extensively, but suffer from a multitude
of problems. First, as network traffic and the size of their signature database
keep increasing, throughput becomes a bottleneck. Second, the detection of
attacks is based mostly on known signatures, making such systems inappro-
priate for handling zero-day attacks. Finally, the significant number of false
positives generated limits their use for prevention (in practice, they are used
solely for network monitoring).

Various attempts have been made to address the issues listed above. High-
performance network intrusion detection has been the subject of research in
FFPF [16], SafeCard [41], and Gnort [149] using specialised hardware such
as network processors and graphics processors. Scanning of multi gigabit
networks links is achieved, but certain limitations on the type signatures
supported are introduced. On the other hand, systems like Earlybird [130]
and Autograph [68] attempt to address zero-day outbreaks by automatically
generating signatures for signature based systems. While they have had some
success in automatically generating signatures, they incur a fairly large false
positives ratio that makes their use impractical.

34 Background

Anomaly Detection

Anomaly detection systems can be separated in payload- and behaviour-based
systems. Payload anomaly detection systems [92, 153, 15] identify anoma-
lies in network packet payloads. This is accomplished by comparing network
traffic with a statistical model of “correct” or innocuous traffic. Anomaly de-
tection systems incur larger overheads than signature based systems, but are
able to identify zero-day attacks. They also exhibit significant false positives
that limit their application to early warning systems.

Packet Vaccine [154] addresses the increased overhead of anomaly detec-
tion, by generating a “vaccine” or a signature for detected attacks that could
be applied on a more lightweight signature based system.

On the other hand, HP’s Virus Throttle [158] aims to slowdown the prop-
agation of worms by targetting anomalous behaviour. This is achieved by
limiting the number of connections that can be performed by any given host
in a period of time. This approach can be very effective against fast propagat-
ing worms, but cannot defend against stealthier worms or client application
attacks. Furthermore, it can disrupt the operation of legitimate P2P appli-
cations.

Others

Solutions using neither signatures, nor statistical models for the detection of
attacks in the network also exist. For instance, Nemu [120] performs network-
level emulation that aims to identify self-modifying binary code in the net-
work. In Section 2.2.3, we saw that attackers employ various techniques to
obfuscate their shellcode. Consequently, techniques like polymorphism lead
to increased false negatives when using network intrusion detection solutions.
Nemu treats network streams as instructions and emulates their execution,
scanning for self-modifying code that could be part of such obfuscated pay-
loads. Network-level emulation incurs small numbers of false positives, but
cannot be performed on gigabit network links, or encrypted traffic.

2.3.7 Operating Systems

Operating system extensions and improvements have been also employed to
improve security, and increase the difficulty factor for compromising a system.
Address space layout randomisation (ASLR) is one of them. ASLR attempts
to shuffle certain program components in every process’s address space. The
starting address of a program’s heap, stack, and dynamic linked libraries are
different every time it is started. ASLR increases the difficulty for attackers to
inject code, and properly use the system’s APIs, but it is not foolproof [134].

2.3 Defences 35

PaX [118] and OpenWall [43] are extensions for Linux that implement non
executable stacks (NX stacks). Consequently, attackers are not able to use
the stack to inject code in vulnerable software. These extensions do not offer
any protection against heap overflows, or return-to-libc attacks. Furthermore,
non executable stacks are not compatible with OS mechanisms that require
code to be executed from the stack, such as signal trampolines1.

ASLR and NX stacks are lightweight solutions that increase security, as
a result they have found a place in many OSes. On the downside, they only
harden a system against certain attacks, while in certain cases they might
not be backwards compatible.

1http://gcc.gnu.org/onlinedocs/gccint/Trampolines.html

 http://gcc.gnu.org/onlinedocs/gccint/Trampolines.html

36 Background

Chapter 3

Argos Secure Emulator

“And [Hera] set a watcher upon her [Io], great and strong
Argos, who with four eyes looks every way. And the goddess
stirred in him unwearying strength: sleep never fell upon his
eyes; but he kept sure watch always.” - Homerica, Aegimius

3.1 Introduction

Self-propagating malware, such as worms, have prompted a wealth of re-
search in automated response systems. We have already encountered worms
that spread across the Internet in as little as ten minutes, and researchers
claim that even faster worms can be realised [139]. For such outbreaks hu-
man intervention is too slow and automated response systems are needed.
Important criteria for such systems in practice are: (a) reliable detection of
a wide variety of zero-day attacks, (b) reliable generation of signatures that
can be used to stop the attacks, and (c) cost-effective deployment.

Existing automated response systems tend to incur a fairly large ratio of
false positives in attack detection and use of signatures [158, 130, 68, 38, 81].
A large share of false positives violates the first two criteria. Although these
systems may play an important role in intrusion detection systems (IDS),
they are not suitable for fully automated response systems.

An approach that attempts to avoid false positives altogether is known as
dynamic taint analysis. As discussed in Chapter 2, untrusted data from the
network are tagged and an alert is generated (only) if and when an exploit
takes place (e.g., when data from the network are executed). This technique
proves to be reliable and to generate few, if any, false positives. It is used in
current projects that can be categorised as (i) hardware-oriented full-system
protection, and (ii) OS- and process-specific solutions in software. These are

38 Argos Secure Emulator

two rather different approaches, and each approach has important implica-
tions. For our purposes, the two most important representatives of these
approaches are Minos [33] and Vigilante [91], respectively.

Minos does not generate signatures at all and for cost-effective deploy-
ment relies on implementation in hardware. Moreover, by looking at physical
addresses only, it may detect certain exploits, such as a register spring at-
tacks [138], but requires an awkward hack to determine where the attack
originated [34]. Also, it cannot directly handle physical to virtual address
translation at all.

In contrast, Vigilante represents a per-process solution that works with
virtual addresses. Again, this is a design decision that limits its flexibility, as
it is not able to handle DMA or memory mapping. Also, the issue of cost-
effectiveness arises as Vigilante must instrument individual services and does
not protect the OS kernel at all. Unfortunately, kernel attacks have become a
reality and are expected to be more common in the future [73]. For signature
generation it relies on replaying the attack which is often not possible due to
challenge/response interaction with cryptographic nonces, random numbers,
etc.

We believe that both hardware-oriented full-system solutions, and OS-
and process-specific software solutions are too limited in all three aspects
mentioned in the beginning of this section. It is our intention to present a
third approach that combines the best of both worlds and meets all of the
criteria.

In this chapter, we describe Argos which explores another extreme in
the design space for automated response systems. First, like Minos we offer
whole-system protection in software by way of a modified x86 emulator which
runs our own version of dynamic taint analysis [107] that is able to protect any
(unmodified) OS including all its processes, device drivers, etc. Second, Argos
takes into account complex memory operations, such as memory mapping and
DMA that are commonly ignored by other projects. At the same time it is
quite capable of handling complex exploits, such as register springs. This is to
a large extent due to our ability to handle both virtual and physical addresses.
Third, buffer overflow and format string / code injection exploits trigger
alerts that result in the automatic generation of signatures based on the
correlation of the exploit’s memory footprint and its network trace. Fourth,
while the system is OS- and application-neutral, when an attack is detected,
we inject OS-specific forensics shellcode to extract additional information on
the exploited code. Fifth, by comparing signatures from multiple sites, we
refine Argos’ signatures automatically. Sixth, signatures are auto-distributed
to remote intrusion detection and prevention systems (IDS and IPS).

We focus on attacks that are orchestrated remotely (like worms) and do

3.2 Related Work 39

not require user interaction. Approaches that take advantage of misconfig-
ured security policies are not addressed. Even though such attacks constitute
an ample security issue, they are beyond the scope of our work and require a
different approach. Specifically, we focus on exploits rather than attack pay-
loads, i.e., we capture the code that triggers buffer overflows and injects code
in order to gain control over the machine, and not the behaviour of the attack
once it is in. In our opinion, it is more useful to catch and block exploits,
because without the exploits the actual attack will never be executed. More-
over, in practice the same exploit is often used with different payloads, so the
pay-off for stopping the exploit is potentially large. In addition, exploits are
less mutable than attack payload and may be more easily caught even in the
face of polymorphism.

Argos was initially designed to serve as a platform for “advertised” high-
interaction honeypots, i.e., honeypots that in addition to running real services
do not need to be “hidden” from the Internet. In the contrary, by actively
providing links to the honeypot (e.g. using DNS, search engines, etc) we
hope that it will gain visibility with attackers employing hit lists rather than
scanning to discover targets. In such a set up, the assumption that only ma-
licious, or at least suspicious traffic is received by the honeypot is no longer
valid, and as such Argos is responsible for correctly identifying malicious traf-
fic. In terms of performance, honeypots do not have the same requirements
as desktop systems, offering us a certain freedom to use accurate but slower
detection techniques. Nevertheless, Argos needs to be fast enough to run real
services while offering a reasonable response time.

The remainder of this chapter is organised as follows. While related work
is discussed mainly throughout the text, we summarise various approaches in
Section 3.2. In Section 3.3 we describe the design of Argos. Implementation
details are discussed in Section 3.4. The system is evaluated in Section 3.5.
Conclusions are in Section 3.7

3.2 Related Work

For an attacker to compromise a host, it is necessary to divert its conventional
control flow to execute his own instructions, or replace elements of the host’s
control flow with his own. As we discussed in Ch. 2, an attacker can accom-
plish this by overwriting values such as jump targets, function addresses and
function return addresses. Alternatively, he can also overwrite a function’s
arguments or even its instructions. Such attacks have been prominent the
last years and can be classified to the following major categories:

40 Argos Secure Emulator

• Stack smashing attacks [3] involve the exploitation of bugs that allow
an attacker to overflow a stack buffer to overwrite a function’s return
address, so that when the function returns, arbitrary code can be exe-
cuted;

• Heap Corruption attacks [126, 30] exploit heap overflows that allow an
attacker to overwrite an arbitrary memory location, and as a result
execute arbitrary code;

• Format string attacks [57] are the most versatile type of attack. They
exploit a feature in the printf() family of functions, which allows the
number of characters printed to be stored in a location in memory.
When a user supplied string is used as a format string, an attacker
can manipulate the string to overwrite any location in memory with
arbitrary values. These attacks offer more options to the orchestrator,
including overwriting function arguments, such as the file to be executed
of the execve() system call;

Such attack methods have been the subject of research by the security
community for years, and a variety of defences have been developed as seen
in Sec. 2.3. In the rest of this section, we will take a more in depth look at
solutions more strictly related with Argos that make use of information flow
analysis.

Suh et al [54] use dynamic information flow analysis to guard against
overflows and some format string attacks, but their mechanism is not widely
available for the most commonly used processor/OS combinations and indeed,
to the best of our knowledge it has not progressed beyond simulation. Instead
of real machines Dunlap and Garfinkel suggest virtual machines [55, 56] for
the analysis of intrusions. Also, similar work to ours is presented in [148]
which uses a modified version of the Dynamo dynamic optimiser. While
Argos is different from these projects in many respects, we do follow a similar
approach in that we employ an emulator of the x86 architecture.

Most closely related to our work are Minos [33] and Vigilante [91]. Like
Argos both employ taint analysis to discover illegitimate use of ‘foreign’
data [107]. The differences with Argos, however, are manifold. Briefly, Minos
is a hardware project that in the current software implementation on Bochs
can only be deployed at a great cost in performance (up to several orders of
magnitude slowdown1). Once misbehaviour is detected, Minos also makes no
attempt to generate signatures. One of the reasons for this is that by aiming

1Indeed, the Minos authors mention that in the future they may replace Bochs
by Qemu (which is already used by Argos): wwwcsif.cs.ucdavis.edu/∼crandall/
DIMVAMinos.ppt.

 wwwcsif.cs.ucdavis.edu/~crandall/DIMVAMinos.ppt
 wwwcsif.cs.ucdavis.edu/~crandall/DIMVAMinos.ppt

3.3 Design 41

at a hardware solution, Minos has had to sacrifice flexibility for (potential)
performance, as the amount of information available at the hardware level
is very limited. For instance, since the hardware sees physical addresses it
is difficult to deal with complex attacks requiring virtual addresses such as
register spring attacks. Moreover, it seems that generating signatures akin
to the self-certifying alerts (SCAs) in Vigilante would be all but impossi-
ble for Minos. In contrast, while Argos works with physical addresses also,
we explicitly target emulation in software to provide us with full access to
physical-to-virtual address mapping, registers, etc.

Vigilante differs from Argos in at least three ways: (a) it protects individ-
ual processes (requiring per-process management and leaving the kernel and
non monitored services in a vulnerable position), (b) it is OS-specific, and
(c) it deals with virtual addresses only. While convenient, the disadvantage
of virtual addresses is that certain things, like memory mapped data, be-
come hard to check. After all, which areas in which address spaces should be
tainted is a complex issue. For this reason, Vigilante and most other projects
are unable to handle memory mapped areas. By positioning itself at the
application-level, approaches like Vigilante also cannot monitor DMA activ-
ity. In contrast, Argos uses physical addresses and handles memory mapping
as well as DMA.

3.3 Design

An overview of the Argos architecture is shown in Fig. 3.1. The full execution
path consists of six main steps, indicated by the numbers in the figure which
correspond to the circled numbers in this section. Incoming traffic is both
logged in a trace database, and fed to the unmodified application/OS run-
ning on our emulator 1©. In the emulator we employ dynamic taint analysis
to detect when a vulnerability is exploited to alter an application’s control
flow 2©. This is achieved by identifying illegal uses of possibly unsafe data
such as the data received from the network [107]. There are three steps to
accomplish this:

• tag data originating from an unsafe source as tainted;

• track tainted data during execution

• identify and prevent unsafe usage of tainted data;

In other words, data originating from the network are marked as tainted,
whenever they are copied to memory or registers, the new location is tainted
also, and whenever it is used, say, as a jump target, we raise an alarm. Thus

42 Argos Secure Emulator

Network data

Memory

dump

(tainted data)

Signature

Refined signature

"0100111"

"0100111001100111"

Guest OS (Windows, Linux, etc)

Sweetbait

taint analysis

Argos emulator

Network

trace

Applications

Extended dynamic

Correlation

Forensics

1

2

2

3

4 65

Figure 3.1: Argos: high-level overview

far this is similar to approaches like [91] and [107]. As mentioned earlier,
Argos differs from most existing projects in that we trace physical addresses
rather than virtual addresses. As a result, the memory mapping problem
disappears, because all virtual address space mappings of a certain page,
refer to the same physical address.

When a violation is detected, an alarm is raised which leads to a signature
generation phase 3©- 6©. To aid signature generation, Argos first dumps all
tainted blocks and some additional information to file, with markers specify-
ing the address that triggered the violation, the memory area it was pointing
to, etc. Since we have full access to the machine, its registers and all its
mappings, we are able to translate between physical and virtual addresses
as needed. The dump therefore contains registers, physical memory blocks
and specific virtual address, as explained later, and in fact contains enough
information not just for signature generation, but for, say, manual analysis
as well.

In addition, we employ a novel technique to automate forensics on the
code under attack. Recall that Argos is OS- and application-neutral, i.e., we
are able to work out-of-the-box with any OS and application on the IA32 in-
struction set architecture (no modification or recompilation required). When
an attack is detected, we may not even know which process is causing the
alarm. To unearth additional information about the application (e.g., pro-
cess identifier, executable name, open files, and sockets), we inject our own
shellcode to perform forensics 3©. In other words, we ‘exploit’ the code under

3.3 Design 43

attack with our own shellcode.

We emphasise that even without the shellcode, which by its nature con-
tains OS-specific features, Argos still works, albeit with reduced accuracy. In
our opinion, an OS-neutral framework with OS-specific extensions to improve
performance is a powerful model, as it permits a generic solution without nec-
essarily paying the price in terms of performance or accuracy. To the best of
our knowledge, we are the first to employ the means of attack (shellcode) for
defencive purposes.

The dump of the memory blocks (tainted data, registers, etc.) plus the
additional information obtained by our shellcode is then used for correlation
with the network traces in the trace database 4©. In case of TCP connec-
tions, we reconstruct flows prior to correlation. The result of the correlation
phase is a real signature that is, in principle, ready to be used for filtering.
However, we do not consider the signature optimal and therefore try to refine
it. For this purpose, Argos submits the signature to a subsystem known as
SweetBait, which correlates signatures from different sites, and refines signa-
tures based on similarity [121]. For instance, a signature consisting of the
exploit plus the IP address of the infected host, would look slightly different
at different sites. SweetBait notices the resemblance between two such signa-
tures, and generates a shorter more specialised signature that it is then used
in subsequent filtering.

The final step is the automated use of the signature 6©. Attached to
SweetBait are intrusion detection and prevention systems (IDS and IPS),
that SweetBait provides with signatures of traffic to block or track. As IDS
we use sensors based on the well-known open source network IDS snort [128]
and for this purpose, SweetBait generates rules in snort rule format. The
IPS is a relatively simple homegrown solution that employs the Aho-Corasick
pattern matching algorithm to match network signatures. Although not very
sophisticated, we have implemented it as a Linux kernel module that can
be used directly with SweetBait. SweetBait is intelligent in the sense that
it distinguishes between virulent attacks (e.g., many incidence reports) and
rare events, and circulates the signatures accordingly. This is analogous to
the way in which the police puts out bulletins for dangerous criminals rather
than for, say, pickpockets.

The focus of this chapter is primarily on steps 1©- 4© and we will limit
ourselves to summarising the SweetBait implementation. Interested readers
are referred to [121] for details.

44 Argos Secure Emulator

3.4 Implementation

Argos extends the Qemu [12] emulator by providing it with the means to
taint and track memory, and generate memory footprints in case of a detected
violation. Qemu is a portable dynamic translator that emulates multiple ar-
chitectures such as x86, x86 64, POWER-PC64, etc. Unlike other emulators
such as Bochs, Qemu is not an interpreter. Rather, entire blocks of instruc-
tions are translated and cached so the process is not repeated if the same
instructions are executed again. Furthermore, instead of providing the soft-
ware equivalent of a hardware system, Qemu employs various optimisations
to improve performance. As a result, Qemu is significantly faster than most
emulators.

Our implementation extends Qemu’s Pentium architecture. In the re-
mainder of this chapter, it will be referred to simply as the x86 architecture.
For the sake of clarity we will also use the terms guest and host to distinguish
between the emulated system and the system hosting Qemu.

We divide our implementation of Argos in two parts. The first contains
our extended dynamic taint analysis which we used both to secure Qemu and
to enable it to issue alerts whenever it identifies an attack. The second part
covers the extraction of critical information from the emulator and the OS to
generate a signature.

3.4.1 Extended Dynamic Taint Analysis

The dynamic taint analysis in Argos resembles that of other projects. How-
ever, there are important differences. In this section we discuss the imple-
mentation details.

Tagging

An important implementation decision in taint analysis concerns the granu-
larity of the tagging. In principle, one could tag data blocks as small as a
single bit, up to chunks of 4KB or larger. We opted for variable granularity;
per byte tagging of physical memory, while at the same time using a single
tag for each CPU register. Per byte tagging of memory incurs insignificant
additional computational costs i.e., over per double word tagging, and pro-
vides higher accuracy. On the other hand, per byte tagging of registers would
introduce increased complexity in register operations, which is unacceptable.
It is worth noting that altering Argos to employ a different granularity is
trivial. For reasons of performance and to facilitate the process of forensics
at a later stage, the nature of the memory and register tags is also different.

3.4 Implementation 45

Register tagging There are eight general purpose registers in the x86 ar-
chitecture [69], and we allocate a tag for each of them. The tag is used to
store the physical memory address from where the contents of the register
originate. Segment registers and the instruction pointer register (EIP) are not
tagged and are always considered untainted. Since they can only be altered
implicitly and because of their role, they belong to the protected elements
of the system. The EFLAGS register is also not tagged and is considered un-
tainted, because it is frequently affected by operations involving untrusted
data, and tagging it would make it impossible to differentiate between mali-
cious and benevolent sources. FPU registers are also not tracked to reduce
complexity and for the sake of performance, although Argos is able to tag
them if required. MMX registers are frequently involved in memory copying
operations, and are tracked by Argos. Due to the way they are represented
internally by Qemu, MMX registers are tagged in the same way as memory
(read below).

Memory tagging Since we do not store any additional data for physical
memory tags, a binary flag for tagging would suffice. Nevertheless, one could
also use a byte flag increasing memory consumption in exchange for perfor-
mance enhancement. This might seem costly, but recall that we tag physical
rather than virtual memory. While virtual memory space may be huge (e.g.,
264 on 64-bit machines) the same is not true for physical memory, which is
commonly on the order of 512MB - 1GB. Moreover, the guest’s ‘physical’
RAM need not correspond to the physical memory at the host, so the cost
in hardware resources can be kept fairly small. The scheme to be used can
be configured at compile time. Following, we will discuss the two tagging
schemes in more detail.

A bitmap is a large array, where every byte corresponds to 8 bytes in
memory. The index idx of any physical memory address paddr in the bitmap
can be calculated by first shifting the address right by 3 (idx = paddr � 3)
to locate the byte containing the bit flag (map[idx]). The individual bit flag
is retrieved by using the lower 3 bits of paddr:

b = map[idx]
⊕

(0x01� (paddr
⊕

0x07))

The size of the bitmap is an eighth of the guest’s total addressable physical
memory RAMSZ (size = RAMSZ

8), i.e., the bitmap for a guest system of
512 MB would be 64 MB.

Similarly, a bytemap is also a large array, where each byte corresponds to
a byte in memory. The physical address paddr of each byte is also the index
idx in the bytemap. Its total size is equal to the guest’s total addressable
physical memory RAMSZ (size = RAMSZ).

46 Argos Secure Emulator

A page directory is a structure used by most modern computers to hold the
virtual to physical memory address translations when paging is enabled [70].
We adopted a stripped-down version of this structure for tagging memory.
For every memory page that contains a single tainted byte, a submap of type
bitmap or bytemap is allocated for that page. The submap is placed in the
page directory, so it can be quickly retrieved by using the 20 most significant
bits of paddr. If a submap is not present then the entire page is treated
as untainted, otherwise the status of an address is retrieved by using the
12 least significant bits of paddr (idx = (paddr ⊕ 0xfff) � 2). A page
directory is the slowest of the memory tagging schemes, as it adds another
level for accessing a memory tag. On the other hand, it can reduce memory
consumption significantly as most physical pages will never contain tainted
data.

Finally, incoming network data are marked as tainted. Since the entire
process does not involve OS participation the tagging is performed by the
virtual NE2000 NIC emulated by Qemu. OSes communicate with peripher-
als in two ways: port I/O and memory mapped I/O. Qemu’s virtual NIC
though, supports only port I/O, which in x86 architectures is performed us-
ing instructions IN and OUT. By instrumenting these instructions the registers
loaded with data from the NE2000 are tagged as tainted while all other port
I/O operations result in clearing the destination register’s tag.

Tracking

Qemu translates all guest instructions to host native instructions by dynami-
cally linking blocks of functions that implement the corresponding operations.
Tracking tainted data involves instrumenting these functions to manipulate
the tags, as data are moved around or altered. Besides registers and memory
locations, available instruction operands include immediate values, which we
consider to be untainted. We have classified instrumented functions in the
following categories:

• 2 or 3 operand ALU operations; these are the most common operations
and include ADD, SUB, AND, XOR, etc. The result is tainted, if one of the
source operands is also tainted.

• Data move operations; these operations move data from register to reg-
ister, copying the source’s tag to the destination’s tag.

• Single register operations; shift and rotate ops belong to this category.
The tag of the register is preserved as it is.

3.4 Implementation 47

• Memory related operations; all LOAD, STORE, PUSH and POP operations
belong here. These operations retrieve or store the tags from or to
memory respectively.

• MMX operations; are tracked by Argos. A bytemap stores the tags for
these registers, which are internally represented as a byte array.

• FPU and SSE operations; are ignored, as explained above, unless their
result is stored in one of the registers we track or to memory. In these
cases, the destination is cleared. More advanced instructions such as
SSE2 and 3DNow! are not supported by Qemu.

• Operations that do not directly alter registers or memory; some of these
ops are NOP, JMP, etc. For most of these we do not have to add any
instrumentation code for tracking data, but for identifying their illegal
use instead, as we describe in the following section.

• Sanitising operations; certain fairly complex instructions result in al-
ways cleaning the tags of their destination operands. This was intro-
duced to marginalise the possibility of false positives. Such instructions
are BCD and SSE instructions, as well as double precision shifts.

Fortunately, we do not have to worry about special instruction uses such
as xor eax,eax or sub eax, eax. These are used in abundance in x86’s to
set a register to zero, because there is no zero register available. Qemu makes
sure to translate these as a separate function that moves zero to the target
register. When this function is compiled it follows the native architecture’s
idiom of zeroing a register.

Modern systems provide a mechanism for peripherals to write directly
to memory without consuming CPU cycles, namely direct memory access
(DMA). When using DMA, OSes instead of reading small chunks of data
from peripherals they allocate a larger area of memory and send its address
to the peripheral, which in turn writes data directly in that area without
occupying the CPU. Qemu emulates DMA for components such as the hard
disk. Whenever a DMA write to memory is performed in Argos, it is inter-
cepted and the corresponding memory tags are cleared.

Preventing Invalid Uses of Tainted Data

Most of the observed attacks today gain control over a host by redirecting
control to instructions supplied by the attacker (e.g., shellcode), or to already
available code by carefully manipulating arguments (return-to-libc attacks).
For these attacks to succeed the instruction pointer of the host must be

48 Argos Secure Emulator

loaded with a value supplied by the attacker. In the x86 architecture, the
instruction pointer register EIP is loaded by the following instructions: call,
ret and jmp. By instrumenting these instructions to make sure that a tainted
value is not loaded in EIP, we manage to identify all attacks employing such
methods. Optionally, we can also check whether a tainted value is being
loaded on model specific registers (MSR) or segment registers, but so far we
have not encountered such attacks and we are not aware of their existence.

While these measures capture a broad category of exploits, they alone
are not sufficient. For instance, they are unable to deal with format string
vulnerabilities, which allow an attacker to overwrite any memory location
with arbitrary data. These attacks do not directly overwrite critical values
with network data, and might remain undetected. Therefore, we have ex-
tended dynamic taint analysis to also scan for code-injection attacks that
would not be captured otherwise. This is easily accomplished by checking
that the memory location loaded on EIP is not tainted.

Finally, to address attacks that are based solely on altering arguments
of critical functions such as system calls, we have instrumented Qemu to
check when arguments supplied to system calls like execve() are tainted. To
reliably implement this functionality we need to know which OS is run on
Argos, since OSes use different system calls. The current version of Argos
supports this feature solely for the Linux OS.

Network Tracking: Mapping Tainted Data to Network Traffic

Argos tags mainly serve as binary flags indicating whether the associated
data are tainted, with the exception of register tags that also point to the
physical memory address where their contents were loaded from. As a result,
anyone attempting to analyse a captured attack, would be presented with the
challenge of mapping the contents of a tainted memory buffer, back to the
original network packets that carried the data.

Argos provides this mapping by extending tags to track the network origin
of each tainted byte. Every byte of data received by the virtual NIC is as-
signed a 32-bit id and logged to disk. The id is calculated by simply counting
the number of bytes received by the NIC, and it stops being unique after
the reception of 232 bytes. In practice, honeypots are rather short-lived (i.e.,
they are periodically restarted to increase stability and security), so we do
not expect that the id counter will wrap-around in real scenarios. Ultimately,
an analyst can still map most data, even in the case the id does wrap-around.

Register and memory tags have to be extended to accommodate this id.
This is straightforward for register tags, but introduces significant space over-
head for memory tags. When network tracking ids are used, we enforce the

3.4 Implementation 49

use of a page directory to hold memory tags, sacrificing some performance
for reduced memory consumption. Performance is also burdened by the over-
head of propagating the id during execution, making this mode of operation
of Argos the slowest one. Network tracking is not enabled by default, but
consists an invaluable tool for security analysts.

3.4.2 Signature Generation

In this section we explain how we extract useful information once an attack
is detected, how signatures are generated, and how they are specialised by
correlating memory and network traces. In addition we show how we refine
signatures with an eye on obtaining small signatures containing an exploit’s
nucleus. Also, unlike related projects like [91], we intentionally investigated
signature generation methods that do not require attacks to be replayed.
Replaying attacks is difficult, e.g., because challenge/response authentication
may insert nonces in the interaction. While we know of one attempt to
implement replay in the face of cookies and nonces [36], we do not believe
current approaches are able to handle most complex protocols.

We emphasise that the signature generation methods described in this
section only server to demonstrate how the wealth of information generated by
Argos can be exploited by suitable back-ends. Interested readers are referred
to Prospector [136] for more information on generating accurate signatures
with Argos.

Extracting Data

An identified attack can become an asset for the entire network security
community if we generate a signature to successfully block it at the network
level. To achieve this, Argos exports the contents of ‘interesting’ memory
areas in the guest for off-line processing. To reduce the amount of exported
data we dynamically determine whether the attack occurred in user- or kernel-
space. This is achieved by retrieving the processor’s privilege ring bits from
Qemu’s hidden flags register. The kernel is always running on privileged
ring 0, so we can distinguish processes from the kernel by looking at the ring
in which we are running.

Additionally, every process is sharing its virtual address space with the
kernel. OSes accomplish this by splitting the address space. In the case of
Linux a 3:1 split is used, meaning that three quarters of the virtual address
space are given to the process while one quarter is assigned to the kernel.
Windows on the other hand uses a 2:2 split. The user/kernel space split is
predefined in most OS configurations, so we are able to use static values as

50 Argos Secure Emulator

FORMAT ARCH TS

REGISTER TAGSREGISTER VALUES

TYPE

EIP REGISTER EIP ORIGIN EFLAGS

MEMORY BLOCKS

MEMORY CONTENTS

FORMAT
FLAG

SIZE PADDR VADDR
TAINTED

Figure 3.2: Memory dump format

long as we know which OS is being run. We take advantage of this information
to dump only relevant data.

To determine which physical memory pages are of interest and need to be
logged, we traverse the page directory installed on the processor. In x86 ar-
chitectures the physical memory address of the active page directory is stored
in control register 3 (CR3). Note that because we traverse the virtual address
space of processes, physical pages mapped to multiple virtual addresses will
be logged multiple times (one for each mapping).

By locating all the physical pages accessible to the process / kernel, and
making sure that we do not cross the user / kernel space split, we dump all
tainted memory areas as well as the physical page pointed to by EIP regardless
of its tags state. The structure of the dumped data is shown in Fig. 3.2. For
each detected attack the following information is exported: the log’s format
(FORMAT), the guest architecture (ARCH could be i386 or x86 64), the type of
the attack (TYPE), the timestamp (TS), register contents and tags (including
EIP and its origin), the EFLAGS register, and finally memory contents in
blocks. Each memory block is preceded by the following header: the block’s
format (FORMAT), a tainted flag, the size of the block in bytes, and the physical
(PADDR) and virtual (VADDR) address of the block. The actual contents of
the memory block are written next. When network tracking is employed,
the network ids for each byte in the memory block are also dumped. When
all blocks have been written, the end of the dump is indicated by a memory
block header containing only zeroes.

All of the above are logged in a file named ‘argos.csi.RID’, where RID is
a random ID that will be also used in advanced forensics discussed in the
following section.

The data extracted from Argos serve for more than signature generation.
By logging all potentially ‘interesting’ data, thorough analysis of the attack
is made possible. Consider for example techniques such as register springs,
which do not directly alter control flow to injected code. By also logging the
legitimate code that is used for the spring, and by exploiting the presence

3.4 Implementation 51

of both physical and virtual addresses in the log, a security specialist can
effectively reverse engineer most, if not all, attacks.

Advanced Forensics

An intrinsic characteristic of Argos is that it is process agnostic. This presents
us with the problem of identifying the target of an attack. Discovering the
victim process, provides valuable information that can be used to locate vul-
nerable hosts, and assist in signature generation. To overcome this obstacle,
we came up with a novel idea that enables us to execute code in the process’s
address space, thus permitting us to gather information about it.

Currently, most attacks hijack processes by injecting assembly code (shell-
code) and diverting control flow to its beginning. Inspired by the above, we
inject our own shellcode into a process’s virtual address space. After detect-
ing an attack and logging state, we place forensics shellcode directly into the
process’s virtual address space. The location where the code is injected is
crucial, and after various experiments we chose the last text segment page
at the beginning of the address space. Placing the code in the text segment
is important to guarantee that it will not be overwritten by the process, since
it is read-only. It also increases the probability that we will not overwrite any
critical process data. Having the shellcode in place we then point EIP to its
beginning to commence execution.

As an example, we implemented shellcode that extracts the PID of the
victim process, and transmits it over a TCP connection along with the RID
generated previously. The information is transmitted to a process running
at the guest, and the code then enters a loop that forces it to sleep forever
to ensure that while it does not terminate, it remains dormant. At the other
end, an information gathering process at the guest receives the PID and uses
it to extract information about the given process by the OS. Finally, this
information is transmitted to the host, where it is stored.

The forensics process retrieves information about the attacked process by
running netstat, or if that is not available OpenPorts [45]. The above tools
offer both the name of the process, as well as all the associated ports. The set
of ports can be used to restrict our search in network traces (as discussed in
Sec. 3.4.2) by discarding traffic destined to other ports. Currently, forensics
are available for both Linux and Win32 systems. In the future, we envision
extracting the same or more information without employing a third process
at the guest.

52 Argos Secure Emulator

Information Correlation

The memory fingerprint collected from the guest, along with the informa-
tion extracted using advanced forensics are subsequently correlated with the
network trace of data exchanged between the guest and the attacker. We
capture traffic using tcpdump and store it directly in a trace database that is
periodically garbage collected to weed out the old traffic streams.

The collected network traces are first preprocessed by re-assembling TCP
streams to formulate a continuous picture of the data sent to the guest.
For stream reassembly we build on the open source Wireshark library [113].
This enables us to detect attacks that are split over multiple packets either
intentionally, or as part of TCP fragmentation.

The current version of Argos uses the attacked port number provided by
forensics to filter out uninteresting network flows. In addition, the dumped
memory contents are also reduced. The tag value of EIP is used to locate in
the network trace the tainted memory block that is primarily responsible for
the attack. This block along with the remaining network flows are processed
to identify patterns that could be used as signatures. Argos uses two different
methods to locate such patterns: (i) longest common substring (LCS), and
(ii) critical exploit string detection (CREST).

(i) LCS is a popular and fast algorithm for detecting patterns between
multiple strings also used by other automatic signature generation projects [81].
The algorithm’s name is self-explanatory: it finds the longest substring that
is common to memory and traffic trace. Along with the attacked port num-
ber and protocol we then generate a Snort signature. While this method
appears promising, it did not work so well in our setup, as the common sub-
string between the trace and memory is (obviously) huge. While we are still
improving the LCS signature generation, we achieved the best results so far
with CREST.

(ii) CREST is a novel but simple algorithm. The incentive behind its de-
velopment was the fact that the output of Argos offers vital insight about the
internal workings of attacks. The dumped information allows us to generate
signatures targeting the string that triggers the exploit, and that may there-
fore be very accurate and immune to techniques such as polymorphism. Using
the physical memory origin (OEIP), value (VEIP), and network id (NEIP) of
EIP (if available) we can pin-point the memory location that acts as the at-
tacker’s foothold to take control of the guest. The advantage of CREST is
that it captures the very first part of an attack, which is less mutable.

Its current implementation is fairly simple. Essentially, we use NEIP

to locate VEIP in the network trace, and proceed to match up the bytes
surrounding it in the network trace, with the bytes surrounding VEIP at OEIP

3.4 Implementation 53

in the memory dump. If NEIP is not available, we locate VEIP by scanning
a subset of the network trace, based on the attacked port and protocol. We
stop when we encounter bytes that are different, and use the resulting byte
sequence combined with the port number and protocol to generate a signature
in snort rule format. Signatures generated in this way were generally of
reasonable size, a few hundred bytes, which makes them immediately usable.
Moreover, as we show in Section 3.4.2, the signatures are later refined to
make them even smaller.

Note that although we currently use only a small amount of it, for signa-
ture generation we are able to work with a wealth of information. In practice,
Argos produces significantly more information than other projects [33, 91],
because we have full access to physical and virtual memory addresses, reg-
isters, EIP, etc. So even though it proves to be very effective even in its
current form, CREST should be considered as a proof-of-concept solution.
For instance, CREST would fail to generate a signature for a format string
attack, or any attack that manages to point EIP to a tainted memory area
without tainting the register itself.

A final feature of Argos’ signature generation is that it is able to generate
both flow and packet signatures. Flow signatures consist exactly of the se-
quence of bytes as explained above. For packet signatures, on the other hand,
Argos maps the byte sequence back to individual packets. In other words,
if a signature comprises more than one packet, Argos will split it up in its
constituent parts. As we keep track of the contributions of individual packets
that make up the full stream, we are even able to handle fairly complex cases,
such as overlapping TCP segments. Packet signatures are useful for IDS and
IPS implementations that do not perform flow reassembly.

SweetBait

SweetBait is an automated signature generation and deployment system [121].
It collects snort-like signatures from multiple sources such as honeypots and
processes them to detect similarities. Even though Argos is its main input for
this project, we have also connected SweetBait to low-interaction honeypots
based on honeyd [124] and honeycomb [81]. It should be mentioned that to
handle signatures of different nature, SweetBait types them to avoid confu-
sion. The SweetBait subsystem is illustrated in Fig. 3.3.

The brain of the SweetBait subsystem is formed by the control cen-
tre (CC). CC maintains a database of attack signatures that is constantly
updated and it pushes the signatures of the most virulent attacks to a set of
IDS and IPS sensors according to their signature budgets, as explained later
in this section. In addition to the IDS/IPS sensors we also associate a set

54 Argos Secure Emulator

Honeypot

Control Center (CC)

Global Control
Centre (GCC)

oneyH oneyH
Internet

IDS

IDS

IDS
IPS

(Other CCs)

HoneypotArgos

Hub
Ethernet

Hub
Ethernet

Ethernet
Hub

Figure 3.3: Architecture of the SweetBait subsystem

 1

 10

 100

 1000

 10000

 100000

25/01
00:00

25/01
12:00

26/01
00:00

26/01
12:00

27/01
00:00

27/01
12:00

28/01
00:00

28/01
12:00

N
o

 S
ig

n
at

u
re

s
(l

o
g

)

Time

Unique signatures
New CC entries

Figure 3.4: SweetBait signature specialisation results

of Argos honeypots with each CC. Honeypots send their signatures to their
CC over SSL-protected channels. The signatures are gathered by the CC
and compared against known signatures. In essence, it uses LCS to find the
amount of overlap between signatures. If two signatures are sufficiently alike,
it concludes that the LCS represents a more specialised signature for the at-
tack and installs a new signature version that deprecates the older one. In this
way, we attempt to locate the immutable part of signatures and remove the
parts that vary, such as target IPs, host names, attack payloads, etc. Doing
so minimises the number of collected signatures to a manageable size. For
example, we employed SweetBait with low-interaction (honed/honeycomb)
honeypots (since we had a much larger set of signatures for these honeypots
than for Argos) and were able to reduce the thousands of signatures generated
during the period of three days to less than 30 (Fig. 3.4).

3.4 Implementation 55

The specialisation process is mainly governed by three parameters. The
minimum match parameter m represents the minimum amount of overlap
that two signatures should have before the CC decides that they are variations
of the same signature. The value m is expressed as a percentage of the size of
the known signature. For instance, m = 90% means that the new signature
should match at least 90% of the signature that is already in the database for
it to be classified as a variation of this signature. The minimum and maximum
length parameters L and M represent the minimum and maximum length of
an acceptable signature respectively. For instance, L = 10 and M = 1500
means that for a signature to be accepted and stored in the database it should
be longer than 10 bytes and shorter than 1500.

The optimal value for these parameters varies with the nature of the sig-
natures. For instance, if the signatures are likely to be unrelated, such as
the signatures generated by honeyd/honeycomb, m should be large to ensure
that the signatures really are related. While in this case the optimal choice
of parameters is a matter of careful tuning, we are in a much better position
when dealing with Argos signatures. After all, here we may force the subsys-
tem to compare only signatures that are known to be related. For instance,
by comparing only signatures with the same VEIP during specialisation, we
know that only similar exploits will be considered. In essence, we can set m
and M to an arbitrarily low and high value respectively, and have L govern
the process entirely. The value of L was determined by looking at the size
of real signatures used by the snort framework. In snort, the content fields
of most rules are fairly small, often less than ten bytes. By choosing a value
slightly greater than that, the signatures are likely to be both accurate and
small. In practice we use L = 12 for the signatures generated by Argos and
make sure that Argos generates signatures that are related (e.g., that have
the same VEIP) in a separate bucket to be processed as a separate group by
SweetBait.

SweetBait deploys the final versions of signatures to network IDSs and
IPSs. To warrant increased performance levels of the connected IDSs and
IPSs and deal with heterogeneous capacities of IDSs and IPSs, a signature
budget in number of bytes can be specified, so that the number of signatures
pushed to the sensors does not exceed a certain level.

To determine the signatures that will be pushed to the sensors, SweetBait
uses network IDS sensors to approximate the virulence of the corresponding
attacks. The density of generated alerts by the IDS is used as an indicator of
aggression, which in turn determines whether a signature should be pushed
to the prevention system or still be monitored2. In other words, a signature

2Specifically, we use an exponentially weighted moving average over the number of re-
ports per sensor.

56 Argos Secure Emulator

that is reported frequently by many sites will have a higher virulence esti-
mation than one that is reported less frequently and by a smaller number of
honeypots, and is therefore more likely to be pushed to the IDS/IPS sensors.
Additionally, signatures can be manually tagged as valid, or invalid to in-
crease the level of certainty. Whether IPS sensors automatically block traffic
based on signatures that are not manually tagged as valid is a configurable
parameter. Details about the IPS sensors are beyond the scope of this thesis
and can be found in [121] and [62].

An important feature of the SweetBait subsystem is its ability to exchange
signatures on a global scale. Global scale collaboration is necessary for iden-
tifying and preventing zero-day attacks, and SweetBait makes this partially
feasible by means of the global control centre (GCC). The GCC collects sig-
natures and statistics in a similar way to a CC, with the main difference being
the lack of a signature budget when pushing signatures to CCs.

The CC periodically exchanges information with the GCC. This includes
newly generated signatures, as well as activity statistics of known signatures.
The statistics received by the GCC are accumulated with the ones generated
locally to determine a worm’s aggressiveness. This accumulation ensures that
the CC is able to react to a planetary outbreak, even if it has not yet been
attacked itself, achieving immunisation of the protected network. Again, we
secured all communication between CC and GCC using SSL.

3.5 Evaluation

We evaluate Argos along two dimensions: performance and effectiveness.
While performance is not critical for a honeypot, it should perform well
enough to allow the emulated system to run smoothly, and it should gen-
erate signatures in a timely fashion.

3.5.1 Performance

For realistic performance measurements we compare the speed of code run-
ning on Argos with that of code running without emulation. We do this for a
variety of realistic benchmarks, i.e., benchmarks that are also used in real-life
to compare PC performance. Note that while this is an honest way of show-
ing the slowdown incurred by Argos, it is not necessarily the most relevant
measure. After all, we do not use Argos as a desktop and in practice hardly
care whether results appear much less quickly than they would without emu-
lation. The only moment when slowdown becomes an issue is when attackers
decide to shun slow hosts, because it might be a honeypot. To the best of
our knowledge such worms do not exist in practice.

3.5 Evaluation 57

Native Qemu Argos-B Argos-B-CI
Served Requests/sec 499.9 23.3 18.7 18.3

Table 3.1: Apache throughput

Performance evaluation was carried out by comparing the observed slow-
down at guests running on top of various configurations of Argos and unmod-
ified Qemu, with the original host. The host used during these experiments
was an AMD AthlonTM XP 2800 at 2 GHz with 512 KB of L2 cache, 1 GB
of RAM and 2 IDE UDMA-5 hard disks, running Gentoo Linux with kernel
2.6.12.5. The guest OS ran SlackWare Linux 10.1 with kernel 2.4.29, on top
of Qemu 0.7.2 and Argos. To ameliorate the guest’s disk I/O performance,
we did not use a file as a hard disk image, but instead dedicated one of the
hard disks.

To quantify the observed slowdown we used bunzip2 and Apache. bunzip2
is a very CPU intensive UNIX decompression utility. We used it to decom-
press the Linux kernel v2.6.13 source code (approx. 38 MB) and measured
its execution time using another UNIX utility time. Apache, on the other
hand, is a popular web server that we chose because it enables us to test the
performance of a network service. We measured its throughput in terms of
maximum processed requests per second using the httperf HTTP perfor-
mance tool. httperf is able to generate high rates of single file requests to
determine a web server’s maximum capacity.

In addition to the above, we used BYTE magazine’s UNIX benchmark.
This benchmark, nbench for brevity, executes various CPU intensive tests to
produce three indexes. Each index corresponds to the CPU’s integer, float
and memory operations and represents how it compares with an AMD K6TM

at 233 MHz.
Fig. 3.5 shows the results of the evaluation. We tested the benchmark

applications at the host, at guests running over the original Qemu, and at
different configurations of Argos: using a bytemap, and using a bytemap with
code-injection detection enabled. These are indicated in the figure as Vanilla
QEMU, Argos-B, and ARGOS-B-CI respectively. The y-axis represents how
many times slower a test was, compared with the same test without emu-
lation. The x-axis shows the 2 applications tested along with the 3 indexes
reported by nbench. Each bar in the graph is a configuration tested, which
from top to bottom are: unmodified Qemu, Argos using a bytemap for mem-
ory tagging, and the same with code-injection detection enabled. Apache
throughput in requests served per second is also displayed in Tab. 3.1.

Even in the fastest configuration, Argos is at least 16 times slower than
the host. Most of the overhead, however, is incurred by Qemu itself. Argos

58 Argos Secure Emulator

 0

 5

 10

 15

 20

 25

 30

 35

 40

nbench
memory

nbench
float

nbench
integer

apachebunzip2

P
er

fo
rm

an
ce

 O
ve

rh
ea

d

Vanilla Qemu
Argos−B

Argos−B−CI

Figure 3.5: Performance Benchmarks

with all the additional instrumentation is at most 2 times slower than vanilla
Qemu. In the case of Apache and float operations specifically, there is only
an 18% overhead. This is explained by the lack of a real network interface,
and a hardware FPU in the emulator, which incurs most of the overhead.
In addition, we emphasise that we have not used any of the optimisation
modules available for Qemu. These modules speed up the emulator to a
performance of roughly half that of the native system. While it is likely that
we will not quite achieve an equally large speed-up, we are confident that
much optimisation is possible.

Moreover, even though the performance penalty is large, personal expe-
rience with Argos has shown us that it is tolerable. Even when executing
graphics-intensive tasks, the machine offers decent usability to human oper-
ators who use it as a desktop machine. Moreover, we should bear in mind
that Argos was not designed for use in desktop systems, but as a platform
for hosting advertised honeypots. Performance is not our main concern. Still,
we have plans to introduce novelties that will further improve performance
in future versions of Argos. A related project that takes a similar approach,
but focuses on performance with an eye on protecting desktops is described
in [64].

3.5.2 Effectiveness

To determine how effective Argos is in capturing attacks, we launched multi-
ple exploits against both Windows and Linux operating systems running on
top of it. For the Windows 2000 OS, we used the Metasploit framework [94],

3.5 Evaluation 59

which provides ready-to-use exploits, along with a convenient way to launch
them. We tested all exploits for which we were able to obtain the software.
In particular, all the attacks were performed against vulnerabilities in soft-
ware available with the professional version of the OS, with the exception
of the War-FTPD ftp server which is third-party software. While we have
also successfully run other OSes on Argos (e.g., Windows XP), we do not
present their evaluation here for brevity’s sake. For the Linux OS, we crafted
two applications containing a stack and a heap buffer overflow respectively
and also used nbSMTP, an SMTP client that contains a remote format string
vulnerability that we attacked using a publicly available exploit.

A list of the tested exploits along with the underlying OS and their as-
sociated worms is shown in table 3.2. For Windows, we have only listed
fairly well-known exploits. All exploits were successfully captured by Argos
and the attacked processes were consequently stopped to prevent the exploit
payloads from executing. In addition, our forensics shellcode executed suc-
cessfully, providing us with process names, IDs, and open port numbers at
the time of the attack.

Finally, we should mention that during the performance evaluation, as
well as the preparation of attacks, Argos did not generate any false alarms
about an attack. A low number of false positives is crucial for automated
response systems. Even though the results do not undeniably prove that
Argos will never generate false positives, considering the large number of
exploits tested, it may serve as an indication that Argos is fairly reliable. For
this reason, we decided for the time being to use the signatures as is, rather
than generating self-certifying alerts (SCAs [91]). However, in case we incur
false positives in the future, Argos is quite suitable for generating SCAs.

3.5.3 Signatures

The final part of the evaluation involves signature generation. To illustrate
the process, we explain in some detail the signature that is generated by
Argos for the Windows RPC DCOM vulnerability listed in Tab. 3.2.

We use the Metasploit framework to launch three attacks with different
payloads using the same exploit mentioned above, against 3 distinct instances
of Argos hosting guests with different IPs. The motivation for doing so is
to force Argos to generate varying signatures for the same exploit. In this
experiment, we employ the CREST algorithm (Sec. 3.4.2) to generate the
signatures, and consequently submit them to the SweetBait subsystem.

During the correlation, CREST searches through the network trace and
reconstructs the byte streams of relevant TCP flows. Note that the logs that
are considered by the signature generator are generally fairly short, because

60 Argos Secure Emulator

Vulnerability OS
Apache Chunked Encoding Overflow (Scalper) Windows 2000
Microsoft IIS ISAPI .printer Extension Host
Header Overflow (sadminD/IIS)

Windows 2000

Microsoft Windows WebDav ntdll.dll Overflow
(Welchia, Poxdar)

Windows 2000

Microsoft FrontPage Server Extensions Debug
Overflow (Poxdar)

Windows 2000

Microsoft LSASS MS04-011 Overflow (Sasser,
Gaobot.ali, Poxdar)

Windows 2000

Microsoft Windows PnP Service Remote Overflow
(Zotob, Wallz)

Windows 2000

Microsoft ASN.1 Library Bitstring Heap Overflow
(Zotob, Sdbot)

Windows 2000

Microsoft Windows Message Queueing Remote
Overflow (Zotob)

Windows 2000

Microsoft Windows RPC DCOM Interface Over-
flow (Blaster, Welchia, Mytob-CF, Dopbot-A,
Poxdar)

Windows 2000

War-FTPD 1.65 USER Overflow Windows 2000
nbSMTP v0.99 remote format string exploit Linux 2.4.29
Custom Stack Overflow Linux 2.4.29
Custom Heap Corruption Overflow Linux 2.4.29

Table 3.2: Exploits captured by Argos

we are able to store separate flows in separate files by using the home-grown
FFPF framework [16]. As a result, CREST may ignore flows that finished a
long time ago and flows to ports other than the one(s) reported by forensics.
The signature generation times including TCP reassembly for logs of various
sizes is shown in Fig. 3.6.

SweetBait was configured to perform aggressive signature specialisation
as explained in Sec. 3.4.2. Examining its database after the reception of all
signatures, we discovered that it successfully classified them as being part of
the same attack and generated a single specialised signature based on their
similarities. The size of the signatures was effectively reduced from approx-
imately 180 bytes to only 16 as it is shown in Fig. 3.7. The figure shows
the payload part of the original signatures, generated by Argos without the
SweetBait subsystem, as well as SweetBait’s specialisation. The signatures
are represented in the way content fields are represented in snort rules, i.e., se-

3.6 Systems Using Argos 61

 0

 2

 4

 6

 8

 10

 12

 14

 0 10 20 30 40 50 60

Si
gn

at
ur

e
ge

ne
ra

tio
n

tim
e

(s
ec

s)

Tcpdump log size (MB)

Figure 3.6: Signature generation

ries of printable characters are shown as strings, while series of non-printable
bytes are enclosed on the left and right by the character ‘|’ and represented
by their hexadecimal values. Observe that the specialised signature gener-
ated by SweetBait is found in each of the original signatures, as shown by
the boxes in Fig. 3.7.

Furthermore, we used the specialised signature to scan a benevolent net-
work trace for the possibility of it generating false positives. Besides home-
grown traces, we used the RootFu DEFCON3 competition network traces
that are publicly available for research purposes. We first verified that the
exploit was not present in the traces, by scanning the trace with open source
community snort rules, using rules obtained from bleeding snort4. Next, we
scanned it with the signature generated by Argos. Again, there were no
(false) alerts.

Even though our signature generation algorithm is fairly simple, we are
able to automatically generate signatures with a very small probability of false
positives, by means of the SweetBait subsystem and deployment at multiple
Argos sites.

3.6 Systems Using Argos

SURFids is an open-source NIDS run by SURFnet, the network provider
of the educational network in the Netherlands. SURFids collects data from
sensors deployed on their client systems that act as low-interaction honeypots
based on Nepenthes [8]. Argos has been integrated as a back-end of SURFids
for handling unknown traffic that Nepenthes cannot handle.

3http://www.shmoo.com/cctf/
4http://www.bleedingsnort.com

http://www.shmoo.com/cctf/
http://www.bleedingsnort.com

62 Argos Secure Emulator

Honey@Home [7] is a similar project, which forwards all unused ports on
the installed system to servers that act as low-interaction honeypots. Af-
ter filtering un-interesting traffic, Honey@Home forwards traffic to Argos
honeypots to identify zero-day attacks.

SGNET [85] is a distributed honeypot deployment. It consists of light-
weight sensors in the edges, which can identify existing attacks using Ne-
penthes [8]. Unknown traffic is forwarded to Argos and ScirptGen [86] tech-
nology is used to automatically generate Nepenthes modules based on the ex-
tracted data. Afterwards, the new modules are distributed to the lightweight
sensors.

3.7 Conclusion

In this section we have discussed an extreme in the design space for auto-
mated intrusion detection and response system: a software-only whole-system
solution based on an x86 emulator that uses dynamic taint analysis to de-
tect exploits and protects unmodified operating systems, processes, etc. By
choosing a vantage point that incorporates attractive properties from both
the hardware level (e.g., awareness of physical addresses, memory mapping
and DMA) and also the higher-levels (virtual addresses, per-process foren-
sics), we believe our approach is able to meet the demands of automated
response systems better than existing solutions.

The system exports the tainted memory blocks and additional information
as soon as an attack is detected, at which point it injects forensics shellcode
into the code under attack to extract additional information (e.g., executable
name and process identifier). Next, it correlates the memory blocks with the
network traces to generate a signature. Similar signatures from multiple sites
are later refined to generate smaller, more specialised signature that are sub-
sequently transmitted to intrusion prevention systems. Performance without
employing any of the emulator’s optimisation modules is significantly slower
than code running without the emulator. Even so, as our intended applica-
tion domain is (advertised) honeypots, we believe the overhead is acceptable.
More importantly, the system proved to be effective and was used to capture
and fingerprint a range of real exploits.

3.7 Conclusion 63

Original signatures:
|98 91|KCBJ7J|99 98|G|F8|@HHA?IK7N|9B F8|N|97 9F 9F|

?JIO| EB 10 EB 19 9F| u| 18 00| #7| F3| w| EB E0 FD 7F |

A|F5|A|FC|F|90 9B|C?|D6 98 91 FC 93 98 92 F9|K|FC|J

|9B 92|H|FC 99 D6|A|96|OJ|93|N|FC|O|FD|CC|97 96|J|91

92|JAKI?|27|B@|99|G|99 F5|I|93 F8|C|D6 27|O7|90 91|

7O|D6 99|@H?|FD 27 91|BI|F9 97|H|D6 96 98|?|91 93 97

F8 FD EB 04 FF FF FF FF|J|92|G|93 92|7|9F 98 EB 04

EB 04 92 9F|?@|EB 04 FF FF FF FF 97|CI|F8 F5 FC|FKK@

OJHF|96|GHN|92 9B|K|93|F7|0A|

|98 99|?B|99|H|99 99|I|96 93|J|F8 D6 F5 90|NKAJ|FC 97

90 91 D6|OA|27 F5 F9 92 EB 10 EB 19 9F| u18 00|#7| F3

| w| EB E0 FD 7F | @N|9F 27 96|JH|FC|N|FC|F|90 D6 90

90 F9 97 9B|J7KO|91 D6|KKG|93 F9 9B 92 92|?KGF|FC|N|

93|F|9F 90 F9 98 92 98 96|A7C|97 99|J|FC|HI7|27|G|98

99|?F|D6 F9 98|@@|9F D6 98|@A|F8 92 93|IB|F8|BFH|98|

NHC|96 90 EB 04 FF FF FF FF|J|98 F8|J|92 9B 90|A|EB

04 EB 04|JKH|91 EB 04 FF FF FF FF F8 FD|J|FD|IH|96|?

?|93 91|C|D6|@NIHI|9F|@|F8 F5|G|D6 0A|

F?F|9B|C?|F5 98|F|27|IO|F9|?|FD|BB?|90 9B F5|?|FC|A

|9B|F|D6 97|CH|F5 EB 10 EB 19 9F| u| 18 00| #7| F3| w

| EB E0 FD 7F 9B|N|9F 27|?GC|F9|JH|F8|B@FICN|99 F9

97|B|9F 90 90 92|?|99 D6|JAB|90|ACO|93 27|N|FD|C|90|

O|96 F5 F9 90|H|98 90|?|93|A|99 93 FC 91 F8|O|9F 93

9B F9|I|D6 92|K@NH|F9 91|F|91|J7A?I|9B 98 93|N7A?|92

27|N|EB 04 FF FF FF FF|HIN7|99|N|98|G|EB 04 EB 04 99|

K|FC D6 EB 04 FF FF FF FF|AACK|98 90|@|92|77|93|?C

|9B|BF|9F 90 F5|A|FD 90 9B 9B 0A 0A|

SweetBait specialised signature:
|EB 10 EB 19 9f|u|18 00|#7|F3|w|EB E0 FD 7F|

Figure 3.7: Signature Specialisation (snort format)

64 Argos Secure Emulator

Chapter 4

Eudaemon: On-demand
Protection of Production
Systems

‘Greeks divided daemons into good and evil categories:
eudaemons (also called kalodaemons) and kakodaemons,

respectively. Eudaemons resembled the Abrahamic idea of the
guardian angel; they watched over mortals to help keep them out

of trouble. (Thus eudaemonia, originally the state of having a
eudaemon, came to mean “well-being” or “happiness”.)’ -

[Wikipedia]

4.1 Introduction

Sophisticated high-interaction honeypots like Argos (Chapter 3), Minos [33],
and Vigilante [91] all use dynamic taint analysis. In practice, taint analysis is
performed using emulators or binary re-writing tools and incurs an overhead
ranging from one to several orders of magnitude. As such, honeypots are ill-
suited for full-time deployment on end-user production systems. Additionally,
current honeypots have several fundamental disadvantages that severely limit
their usefulness [80, 162]:

1. Honeypot avoidance: an attacker may create a hit list containing all
hosts that are not honeypots (e.g., using meta-information services)
and attack only those machines.

2. Configuration divergence: the configuration of honeypots often does not
match exactly the configuration of production machines. For instance,

66 Eudaemon: On-demand Protection of Production Systems

users may have installed different versions of the software, plugins, or
additional programs. Honeypots only reflect a limited set of config-
urations. Indeed, high interaction honeypots typically have a single
configuration.

3. Management overhead: honeypots require administrators to manage
at least two installations: one for the real systems, and one for the
honeypot.

4. Limited coverage: even if a honeypot covers a sizable number of IP
addresses, it may take a while before it gets infected. This is especially
true if the honeypot only covers dark IP space. Moreover, the address
space that is covered is limited by the amount of traffic that can be
handled by a single honeypot.

5. Server-side protection: most honeypots mimic servers, by sitting in dark
IP space and waiting for attackers to contact them. Unfortunately, the
trend is for attackers to move away from the servers in favour of client-
side attacks [49, 131].

As we have seen in Section 2.3, other intrusion detection methods that
do not rely on taint analysis and perform better than it do exist, but suf-
fer from other problems and do not enable the generation of any type of
“vaccine” for the exploited fault. Replaying identified attacks against high-
interaction honeypots has been suggested [91, 146] to address the latter is-
sue, but successful replaying remains a subject of research in the presence of
challenge/response authentication [37, 86]. Moreover, heavily instrumented
applications or machines that serve as replay targets for many alerts do not
scale easily.

To solve the honeypot problems mentioned above, without sacrificing
the generation of valuable data about the attack, we propose to turn end-
user hosts into heavily instrumented honeypots. This can be achieved by
transparently switching any application between native and intensely instru-
mented execution, whenever desired and in a timely manner. Previous work
in this area proposed selective protection of a particular segment of an ap-
plication [135, 90]. Running the segment in instrumented mode provides the
means to generate patches that ‘fix’ the faults. However, these solutions are
dependent on a detector that will initially identify the attacks. We therefore
claim that they are complementary to Eudaemon.

As an alternative, Ho et al. investigated ways to speed up taint analysis so
as to make it deployable as a full-time solution on production machines [64].
Their solution is based on a virtual machine (VM), that transfers execution

4.1 Introduction 67

to a modified Qemu [12] emulator, whenever tainted data are read into the
system or processed. They achieve much better performance than other sys-
tems providing system-wide protection, but the slow-down is still significant
(a factor 2 on average). In addition, they require the installation of a modi-
fied Xen hypervisor on the machine which in practice hinders its deployment
on the majority of home users’ PCs. Finally, while full-system protection is
attractive as it also catches attacks on the kernel, the downside is that it
becomes harder to provide fine-grained analysis of the actual program under
attack.

Ideally, one would make every host operate under heavy-weight instru-
mentation constantly so as to provide full-time safety. Unfortunately, as we
have seen, doing so is impractical (at least in the foreseeable future) due
to the associated overhead which would likely result in a reduction in user
productivity. On the other hand, we propose that it may be possible to
explicitly switch to heavily instrumented ‘honeypot mode’ under certain con-
ditions, provided the conditions are such that they strike a balance between
increased protection and performance. In the remainder of this section, we
sketch two such scenarios: idle-time honeypots, and honey-on-demand.

Idle-time honeypots

Studies suggest that PCs tend to be idle more than 85% of the time [65].
This refers to both idleness due to lack of user interaction (idle desktop),
and idleness in terms of processing (idle CPU). Client machines display both
types, but the former presents an interesting opportunity, and can serve as
the condition that triggers the switch to honeypot mode. Much like a screen-
saver protecting the screen from damage while the user is away, turning a
machine to a honeypot protects running processes (e.g., instant messengers,
p2p programs, system services, etc) from attacks such as buffer overflows,
code injection, etc. While acting as a honeypot the machine behaves exactly
as it did before, with the sole difference being a reduction in processing speed.

If at any time, any host can be a honeypot, the rules of the game for
the attackers change significantly. For instance, they can no longer harvest a
set of IP addresses in advance, because what appears to be a suitable target
now may be a heavily instrumented honeypot by the time they attack it. As
long as some machines in the set run as honeypot, the attacker risks being
exposed. As a result, important classes of attack are rendered obsolete, and
problems 1-4 are resolved.

68 Eudaemon: On-demand Protection of Production Systems

Honey-on-demand

An alternative application of Eudaemon is sometimes popularly referred to
as ‘the big red button’, i.e., a button that users may press when they are
about to access an unknown and possibly suspicious website, or when they
open attachments, view images or movies, etc. Pressing the button will make
the application run in honeypot mode, heavily instrumented and safe against
client-side exploits.

As it may often seem ill-advised to depend on the user for making such
decisions (on the other hand, similar principles are used extensively in a
modern OS like Windows VistaTM), we stress that the ‘big red button’ is a
metaphor. It represents a generic interface for determining which application
should be protected and when. Besides end users, the interface could be
used by applications. For instance, mail readers could demand to be run
in emulation mode when opening an email classified as spam, or from an
unknown sender. Also, faster but less accurate intrusion detection systems
or access control systems could trigger a switch to honeypot mode in the
event of an anomaly [52]. Alternatively, other mechanisms, such as whitelists
of network addresses could be used to decide whether a web browser should
switch to emulated execution.

Using Eudaemon in the above manner helps us tackle the last and poten-
tially most important issue with current honeypots. Since 2003, client-side
attacks are increasingly common. Hackers take over client machines and
group them into botnets that are subsequently used for unwanted and ille-
gal activities, such as spamming, on-line fraud, distributed denial of service
(DDoS) attacks, and harvesting of passwords and credit cards. Such attacks
are not caught by most current honeypots and client honeypots are much less
common, and for the few that do exist (e.g., [155, 101]), the other problems
remain.

Finally, Eudaemon may be used for servers. Often, when a vulnerability
is announced, there is not yet a patch available. Even if there is a patch
available, administrators may be reluctant to apply it right away. If the
server is not too heavily loaded, Eudaemon may be used to run the server in
safe mode, thus buying precious time until the patch can be applied. Such
usage escapes the honeypot and client-side exploits domain, and enters the
area of intrusion prevention.

Contribution: Eudaemon

In this chapter, we present the design, implementation, and evaluation of
Eudaemon, a ‘good spirit’ capable of temporarily possessing unmodified ap-
plications at runtime to protect them from evil. Our contribution is a novel

4.2 Related Work 69

idea for applying honeypots, with a wide range of possible applications. Our
focus is primarily on the techniques for possession, protection, and release,
rather than on the applications that may make use of them. In addition we
explain in detail how such a switch to and from honeypot mode works in a
modern operating system.

In a nutshell, when Eudaemon receives the order to possess a process, it
attaches to the process in such a way that we can observe and control the
execution of the target process, and examine and change its core image and
registers. Most modern OSes have functionality for doing so (for instance,
UNIX provides the ptrace system call for this purpose, while Windows XP
allows for the creation of threads in target processes). We temporarily pause
the execution of the victim process, save its processor state, and inject a
small amount of shellcode in its address space. The shellcode calls a modified
version of an open source emulator which is linked in as a library. The
emulator is started with the processor state that was previously saved. From
that point onwards, execution of the process code continues, except that the
emulator provides full-blown taint analysis, and raises an alert whenever data
with suspicious origins (e.g., the network) is used in a way that violates the
security policy. When Eudaemon receives the order to release the process, it
halts the process temporarily, removes itself from the process and resumes the
process in native mode. In other words, network applications (e.g., peer-to-
peer or FTP download systems), besides being inactive for a few milliseconds,
are not interrupted for the possession period.

The remainder of this chapter is organised as follows. In section 4.2
we place our work in the context of related work. Section 4.3 presents an
overview of the system’s design. Implementation details are given in Sec-
tion 4.4. Section 4.5 evaluates performance, and conclusions are drawn in
Section 4.6.

4.2 Related Work

Taint analysis is used by many projects such as TaintCheck [107], Minos [33],
Vigilante [91], and Argos (Chapter 3). Most of the existing work assumes de-
ployment on dedicated honeypots. This is mainly due to performance reasons.
Likewise, client-side honeypots tend to be dedicated machines also [155, 101].
As a result, these techniques suffer from most of the problems identified in
Section 4.1.

An interesting exception includes the work on speeding up taint analysis
by switching between a fast VM and a heavily instrumented emulator by
Ho et al. discussed earlier [64]. One drawback of the method (besides an
overhead that is still considerable compared to native execution) is that it

70 Eudaemon: On-demand Protection of Production Systems

can only be installed by, say, home users willing to completely reconfigure.
their systems to run on a hypervisor.

In contrast, we deal with performance penalties by running in slow mode
on demand. In essence, we slice up program execution in the temporal do-
main. A different way of slicing is known as application communities [89]:
assuming a software monoculture, each node running a particular application
executes part of it in emulated mode. In other words, applications are sliced
up in the spatial domain and a distributed detector is needed to cover the full
application. Eudaemon directly benefits individual installations without re-
lying on a monoculture. In practice, the OS used by communities tends to be
uniform, but variation exists in applications, due to plug-ins, customisations
and other extensions.

In a later paper, the same groups employs selective emulation to provide
self-healing software by means of error virtualisation [90]. Again slicing is
mostly in the spatial domain. As far as we are aware, neither of these projects
supports taint analysis. Indeed, it seems that for meaningful taint analysis,
the tainted data must be tracked through all functions and, thus, selective
emulation may be more problematic. At any rate, as we mentioned earlier,
the Eudaemon technique is complementary to [90] and could be used as an
attack detector.

Another interesting way of coping with the slowdown (and indeed, a way
of slicing in the temporal domain for servers) is known as shadow honeypots [5].
A fast method is used to crudely classify certain traffic as suspect with few
false negative but some false positives. Such traffic is then handled by a
slow honeypot. Tuning the classifier is delicate as false positives may over-
load the server. In addition, shadow honeypots suffer from the problems of
configuration and management overhead identified in Section 4.1.

Rather than incurring a slow-down at the end users’ machine, many
projects have investigated means of protection for services running on user
machines by way of signatures and filters. Such projects include advanced
signature generators (e.g., Vigilante, VSEF, and Prospector [91, 18, 136]),
firewalls [157], and intrusion prevention systems on the network card [41].

For instance, Brumley et al. propose vulnerability-based signatures [18]
that match a set of inputs (strings) satisfying a vulnerability condition (a
specification of a particular type of program bug) in the program. When
furnished with the program, the exploit string, a vulnerability condition,
and the execution trace, the analysis creates the vulnerability signature for
different representations, Turing machine, symbolic constraint, and regular
expression signatures.

As mentioned earlier, the signature generators for the above projects may
be capable of handling zero-day attacks, but they produce them by means

4.3 Design 71

of dedicated server-based honeypots. Hence, they do not cater to zero-day
attacks on client applications. To some extent the problem of zero-day attacks
also holds for virus scanners [143], except that modern virus scanners do
emulate some of the data (e.g., some email attachments) received from the
network. However, remote exploits are typically beyond their capabilities.

Protection mechanisms such as StackGuard [35], PointGuard [23], and
address space and instruction set randomisation [14, 78] protect against cer-
tain classes of attack, but are unable to generate much analysis information
about the attack, let alone generate signatures.

Many groups have tried to use such fast detection methods based on
compiler extensions and OS extensions like ASLR, and combine them with
detailed instrumentation performed on a different host after replaying the at-
tack [146]. In our opinion, replaying is still difficult due to challenge/response
authentication, although promising results have been attained [37, 106]. More
importantly, the heavily instrumented machines that perform the analysis
may become a bottleneck if many attacks are detected. Eudaemon inher-
ently scales because it employs user machines.

Process hijacking is a common technique in the black-hat community [6,
125]. By injecting code into live processes, such attacks are hard to detect, as
no separate process is created and no attack can be found at the file-system
level. Also, Nirvana, as described by Bhansali et al in [13], is an engine for
the Windows OS that permits detailed instruction level tracing by means of
simulation, and holds the ability to transparently attach on a running process.

To conclude this section, in 2005 Butler Lampson proposed to partition
the world into two zones: green (safe) and red (unaccountable) [82] and use a
VM to isolate the two parts. While more work is clearly needed in this area,
we believe Eudaemon might be a step toward having the two zones while
maintaining an integrated view on the applications.

4.3 Design

Eudaemon has been partially inspired by techniques used by hackers and
debuggers alike to attach to running applications, instead of requiring them
to be loaded from within the controlled debugger context. We use similar
techniques to hijack or possess a process transparently with the goal of heavily
instrumenting unmodified binaries to protect them against remote exploit
attempts.

Eudaemon has been designed to run as a system service, where requests
to possess or release applications can be made. The terms possession and
release will be used to describe the act of switching a process to emulated
and native execution respectively. A high level overview of the system is

72 Eudaemon: On-demand Protection of Production Systems

possessedEudaemon is notified

of fork

1

4

library
"inject" emulator

5

Possession/Release request

3

2

possessed
processes

not possessed
processes

process forks

Eudaemon possesses child
processes automatically

Eudaemon

System Processes

1

0

0

1

Figure 4.1: Eudaemon overview

shown in Fig. 4.1. Requests to possess or release an application can be issued
based on any criterion, such as an explicit user request, or as a result of
persisting inactivity at the host, as mentioned in the introduction.

After receiving a request (1©), Eudaemon immediately attempts to attach
to the target process to force it to run in an emulator (2©). The complex-
ity of the procedure varies depending on the platform implementation, but
most modern operating systems do support (system) calls that implement
the desired functionality (e.g. Linux, BSD, and Windows XP). Attaching to
a process can be performed using its process identifier (PID) alone. When
threading is used, the thread identifier (TID) can be used instead.

For safety, the operating system ensures that only a program running
under the same or super-user credentials is able to attach to a given process.
This scheme guarantees that users cannot possess or release processes they
do not own.

When an emulated process spawns new processes (3©), we can also request
the automatic possession of its children to enable Eudaemon to protect an
application consisting of multiple processes (5©). We emphasise that even
in this case a program need not be Eudaemon-enabled in any way. The
emulator library which manages execution makes sure to notify the system
on the creation of new processes (4©). Threads can be handled internally,
since all of them share the same “possessed” address space, and the emulator
can proxy new thread requests.

4.3 Design 73

to act as second stack

Newly mapped memory block

Heap can be shared

DATA

DATASTACK

HEAP

Unmapped
Data

TEXT

Figure 4.2: Process memory layout

4.3.1 Process Possession

Switching to emulated execution (possession), is accomplished by injecting
code to perform this task within the target process space. For threaded
applications it is sufficient to inject the code once, since all threads lie in the
same address space. Nevertheless, the amount of code required to perform
such a complex job can be significant. What this implies is that the costs of
copying or injecting the emulator code within a process, could compromise
the transparency of the system.

We overcome such an eventuality by making the emulator a dynamic
shared library (known as DSO or DLL, depending on the platform). Libraries
impose some restrictions on the included code, but on the other hand they
make code reusing simple and efficient. When a DLL is loaded by multiple
processes, it is actually loaded once in system memory, and only mapped
in each process’s address space. As operating systems allow libraries to be
loaded either at runtime, or a priori for every process, we have some freedom
in how we inject the emulator code efficiently and in a way that will scale
even when multiple targets are possessed. For more details on loading the
emulator in a process, we refer the reader to Section 4.4.

After loading the necessary code in the target process, we still need to ac-
tivate it, and supply the required state so that execution can resume virtually
undisturbed. Acquiring a target’s execution state is commonly performed by
debuggers and we use the same technique. As we will explain in detail shortly,
supplying such state to the newly injected code in the target, is more involved
and requires that we protect the integrity of the target. Phrased differently,
our code shares the target process’s address space, and we need to isolate its
memory.

Fig. 4.2 shows the typical layout of a process’s memory. Application code

74 Eudaemon: On-demand Protection of Production Systems

is loaded in what is called the text segment, and it is protected by being
marked read-only. Loaded libraries, even though not shown in the Fig., also
have their corresponding code segments protected by being read-only, and
as such our code is implicitly protected. Process data are stored mainly in
two areas: the heap and the stack. Heap size is dynamic, and grows towards
larger addresses, while stack is usually fixed, and is used as a LIFO queue.
The stack grows towards lower addresses.

Every thread of execution has its own stack, which in architectures like
the x86 is addressed using special CPU registers and implicitly updated by
special instructions. As a result, executing our code using the same stack
as the process code would lead to severe inconsistencies in the stack. In
contrast, heap memory is larger and allocated objects are referenced explicitly
by holding memory pointers. This permits us to share the heap for any objects
we need to allocate. In both cases, however, we cannot rule out the possibility
that the program will access data owned by the library either as a result of
an error, or as part of a malicious attempt to thwart its proper operation.
We handle data protection through the emulator, which we describe in more
detail in Section 4.3.3.

To safely call the code we have already injected, we first map a memory
segment in the target process that will serve as a stack for the emulator. This
way we ensure that both our code and the process’s code can be run in parallel
without interfering with each other. The way this is accomplished depends
on the underlying system. For example, some systems allow a process to
reserve a memory segment in another process, while on others we are forced
to inject a piece of short lived code to perform the allocation.

In the latter case, we need to choose carefully the location where to place
the short lived activation code, so as to not compromise the target’s integrity.
One possible solution is to choose an area in the target’s text memory space,
save it, and then overwrite it with the activation code. When the activation
code completes, the original code can be restored. However, this process
requires pausing all threads in order to guarantee that the location will not
be used while the activation code resides there.

Ideally, we would like to avoid such overhead and prefer to inject the
code in a location that we know is no longer in use. In practice, the binary
object’s header that resides in the text segment is often a feasible location.
Certain bytes in the header are used only when the executable is loaded by
the system in memory. Usage of executable header memory to run code has
been demonstrated before by virus writers to inject parasitic code in running
programs [17]. A more extreme solution is to use the space left by compilers
between the functions of an application for performance reasons [63], but we
have not explored such a course in our implementation.

4.3 Design 75

To activate the library, we use a part of the newly allocated stack to store
the state we extracted when we attached to the target, and detach from the
process. Finally, the activation code calls a function in our library which
takes over the execution of the process.

4.3.2 Process Release

To return a process back to native execution the emulator needs to be notified
to clean up and export the state of the process, as it would have been if the
process has been running natively all the time. Delivering such a notification
could be performed by various means, but to preserve semantics similar to
those of possession we chose once more to inject deactivation code into the
process. The code simply performs a call within the library to deliver the
notification.

If the call succeeds, Eudaemon needs to wait until the emulator exits, and
control is returned to the activation code that was injected during possession.
The remainder of that code will notify Eudaemon that the process can be
switched back to native execution, and if necessary also release the allocated
second stack. To complete the switch, Eudaemon reads the state of the
process as exported by the library, and reinstates it as the process’s native
state.

4.3.3 Emulator Library

The emulator library is decoupled from Eudaemon, so that it can be trans-
parently replaced without affecting the system’s operation. As long as the
library adheres to Eudaemon’s predefined emulator interface, and the library
itself does not compromise the process, any implementation that shields the
process against attacks can be used. We now describe at a high level the
required interface for a library to be used in Eudaemon, and also present the
criteria that need to be obeyed in the remainder of this section. The exact
library calls will be listed in Section 4.4. From a high-level perspective, the
desired interface consists of three functions:

• A function to check that the library is not already in control of the
target process in order to handle requests to possess a process that is
already possessed. To avoid possible conflicts the state of the library
(active/inactive) is exported via such a call.

• A function to initialise and give control over the process to the library.
The function represents the entry point of the library, where control is
redirected after setting up memory and process state. It should neither

76 Eudaemon: On-demand Protection of Production Systems

fail nor return, unless there is an error in the program itself or the
library was notified to exit.

• The final function required is one that signals the emulator library to
relinquish control of the process, and return to the caller. This call
need not be synchronous, in the sense that the library does not need to
terminate immediately. Eudaemon will wait for the process to complete
the switch to native execution.

A more important aspect of the library is that it should protect itself
from unintentional or malevolent access of critical data. As we briefly men-
tioned earlier, a program could access library data in the stack or heap, and
in that way compromise the mechanism that is supposed to be protecting the
application. To guard against such a possibility we adopt a memory protec-
tion method very similar to the one used in the x86 CPU architecture (see
Section 4.4.1 for details).

4.4 Implementation

We completed an implementation of Eudaemon on Linux. We also completed
most of the possession and release functionality for Windows, while work on
the required library-based emulator is in a prototype phase. In the remainder
of this section, we only discuss in detail the Linux implementation of the
main components of our design: (i) a process emulator that implements taint
analysis, and (ii) Eudaemon possession and release.

4.4.1 SEAL: A Secure Emulator Library

SEAL is a secure, x86-based user-space process emulator implemented as a
library. It is based on Argos, as described in Chapter 3, and employs the
same dynamic taint analysis.

We modified Argos in the following ways. First, we do not desire whole-
system emulation, so we ported the dynamic taint analysis functionality to
a user-space emulator. As Argos shares its code base with Qemu [12], which
includes a user-space emulator, doing so was straightforward. Second, a user-
space emulator has no notion of virtual NICs, so we had to modify the tagging
mechanism. For instance, SEAL tags bytes when they are read from sockets
(and certain other descriptors). Third, as the original process and SEAL
share the same address space, we had to protect data used by SEAL from
being clobbered by the process. Fourth, we packaged SEAL as a library with
a compact interface. We now discuss these issues and the general operation
of SEAL in detail.

4.4 Implementation 77

Tagging Data

Processes read data by means of the read system call which is used for
sockets, files and pipes. To distinguish suspect data from harmless input, we
introduce a 64KB bitmap (a bit for each one of the possible 216 descriptors
in Linux) that marks certain descriptors as tainted. Calls to read result in
data tagging only if a tainted descriptor was used. We now describe how we
monitor system calls to taint descriptors. First, socket() and accept() both
create descriptors for network communication. As network data is suspect,
the descriptors are marked tainted. Second, open() returns a descriptor for
file access. Normally, we ignore this call, but users are allowed to mark certain
directories as unsafe to capture exploits in files. Consider a malicious image
in an attachment that triggers a vulnerability in the viewer. SEAL scans
the path name provided to open, and taints the descriptor if the file is in a
directory marked unsafe (e.g., /tmp, or /home/...). Third, the pipe() call
creates a pair of descriptors for inter-process communication. SEAL considers
input from another process as unsafe, since it is of unknown origin, and taints
both descriptors. Finally, dup() and dup2() create a copy of a descriptor. If
the original descriptor is tainted, we also taint the copy.

Besides the read() system call, programs can access input by means of
message passing and memory sharing. Messages can be exchanged either
over a network socket, or a message queue. In both cases, we can trivially
monitor the message receiving system calls to taint incoming data. Handling
shared memory is more difficult. Programs may either map files into their
address spaces, or share memory pages with other programs. Simply taint-
ing the memory is not sufficient, because it would miss updates made by
other processes. We therefore included a sticky flag for every tainted page.
Asserting this flag ensures that the page will be always considered tainted
ignoring all writes performed by the process, until it is unmapped or not
shared anymore.

Tracking Tainted Data

Data items tagged as tainted are tracked during execution. Tracking is
achieved by instrumenting the guest’s instructions to propagate tags, the
same way as in Argos.

Tags in SEAL are accessed through a one-level page table. We partition
memory space in pages, and only when data belonging to a memory page
are tainted, tag space for that page is allocated and the corresponding tags
asserted. The page table contains pointers to structures actually containing
the tags for each page, where a tag can either be a single bit, or a byte. While
it would have been faster to use a one-dimensional tag array, we wanted to

78 Eudaemon: On-demand Protection of Production Systems

keep the memory footprint of the emulator as small as possible, especially
since SEAL and user application share the same address space. In addition,
by aligning the dynamically allocated blocks of tags on addresses that are
multiples of four, the least significant bits of page tables entries are unused,
and can be used to track inexpensively the sticky page flag mentioned above.

When a typical Linux process is running SEAL using single bit tags,
the amount of memory X (in MB) that can be used by the process can
be expressed as: X + (X/8) + 4 < 3072 (the maximum addressable virtual
memory being 3 GB or 3072 MB, the page table taking up to 3 MB, and
1 MB taken by library code and statically allocated data). So, a process
under SEAL can use up to 2727 MB of the virtual address space, reducing its
maximum available memory by about 9.64%. At runtime, the actual memory
footprint of the library depends on application behaviour, and the amount
of tainted data. We can calculate a 12.5% upper boundary for the memory
overhead imposed by the library, if we assume all process data are tainted
and a single bit is used for each byte.

Attack Detection

Attack detection is also performed as in Argos, by checking instructions call,
jmp, and ret. SEAL monitors these instructions, and checks that none of
them is used with tainted arguments, or results in EIP pointing to tainted
data. Even in the case where EIP is not directly pointed to a tainted location,
“walking in” an area with tainted code will eventually cause an alert since
attackers are bound to use a checked instruction. In other words, SEAL is
able to detect most overwriting and code injecting exploits.

After an attack is detected, SEAL generates an alert and logs the state
of the emulator to persistent storage. It scans the victim process’s memory
and logs all locations that have been marked tainted, as well as the virtual
CPU’s registers, and the type of the offending instruction. It also collects
information (like pid, name, and DLLs) about the victim application. The
logs are subsequently used by signature generators to create anti-measures.
Signature generation in Argos/SEAL is discussed in Section 3.4.2.

Protecting SEAL Data

As application and SEAL reside in the same address space, we need to protect
emulator data against malicious or accidental accesses by the application. As
mentioned earlier, our solution resembles memory protection in x86 architec-
tures. The x86 CPU contains a hardware memory management unit (MMU)
that partitions the linear physical memory space into pages of virtual mem-
ory space. The MMU is responsible both for translating a virtual address

4.4 Implementation 79

to a physical one, as well as enforcing a page protection mechanism. This
way every process is assigned each own virtual address space isolating it from
other processes, and protecting kernel space from the processes.

We adopt the same principle by using a virtual MMU that enforces page
level protection. SEAL instruments all memory accesses in the application’s
code to go through the virtual MMU, where they are validated to make
sure that library owned memory is not accessed. Every page allocated by
the library is marked with a flag that allows the virtual MMU to perform the
validation. The structure that these flags are stored in is of small importance;
a reasonable choice in our case was to use one of the extra bits in the page
table described in Section 4.4.1.

Keeping track of protected memory pages is straightforward. It only
requires that on allocation and release of heap memory the library updates the
corresponding bits. The virtual MMU can also be used to protect the stack,
global library data, and library read-only data to defend against information
leakage that could be exploited by attackers. Obviously, it protects its own
bitmap and data, while the code is protected in the same way as all other
code.

Checking System Calls

Monitoring the use of tainted data in critical operations is the same as in the
whole-system emulator. However, being in user-space offers us the chance
to expand operations that are monitored to include certain system calls. In
theory, we could apply policies concerning tainted arguments to all system
calls, but in practice it makes sense primarily for the exec() system call which
executes a file by replacing the image of the current process with the one in
the file. It has been frequently exploited by overwriting the arguments to
load arbitrary programs. By checking the arguments for tainted tags, SEAL
shields programs against such attacks.

Signal Handling

SEAL handles signals transparently to the application. Upon receiving con-
trol of a process, original signal handlers are replaced with the emulator’s
handler. This single signal reception point queues arriving signals that will
be processed at a later time. System calls used to update signal handlers
and masks, are also intercepted to keep track of the process’s signal related
behaviour.

Such an approach is necessary to ensure that native code is never called
directly, but to allow also switching to emulation mode while executing a
signal handler at the target. To clarify this point, we will briefly describe

80 Eudaemon: On-demand Protection of Production Systems

how the Linux kernel handles signals. Upon signal delivery, a new temporary
execution context is created by the kernel for the handler to execute, and the
previous context is saved in user-space. Before relinquishing control to the
signal handler, which runs in user-space, a call to sigreturn() is injected in
the temporary handler context. This system call serves the sole purpose of
returning control to the kernel, so that the original execution context can be
restored. When SEAL is in place, it imitates the kernel. As a result, if the
emulator receives control while a signal handler is executing, it is still able
to switch to the process’s original execution context in emulation mode by
intercepting sigreturn().

Eudaemon Support

The SEAL user-space emulator as described so far, can be used to run ap-
plications securely, but cannot be used with Eudaemon yet. To enable the
transition of a process from native to emulated execution we need further
extensions. Primarily, SEAL needs to be in a form which can be dynamically
included in any process. Dynamic shared libraries or DLLs provide exactly
that. Compiling SEAL as a dynamic shared library is trivial, but it requires
a simple interface to interconnect with Eudaemon. We use the following as
a basic interface for interconnection with Eudaemon:

• bool seal isrunning(); this function receives no arguments. It returns
a boolean value that specifies whether the emulator is active at the
moment the function was called.

• void seal initandrun(struct cpu state *st). This is the library’s main
entry point. It initialises the emulator with the snatched process state
such as register values, MMX, and floating-point state, and commences
emulation.

• bool seal stop(); this function requests that the emulator stops, and
consequently that seal initandrun() returns. It returns true on success
and false if SEAL is not actually running. Calling this function does
not cause the emulator to exit immediately. Instead it waits until the
virtual CPU reaches a state that is safe to return.

Finally, the exec() system call also requires modification. Compiling
SEAL as a library means that if the current process image is replaced with a
different executable by exec(), we have to re-attach and switch it to emulation
mode, or let the newly called binary execute natively. By default we use the
latter option. To support the former, we permit exec() to signal Eudaemon
of the event, so that the new process can be forced into emulation mode once
again.

4.4 Implementation 81

TARGET
PROCESS

PROCESS
STATE

ELF
HEADER

INJECT ACTIVATION
SHELLCODE

READ PROC
STATE

DISCOVER
LIBRARY SYMBOLS

2

1

4

dlopen()

TXT SECTION

LD_PRELOAD

ATTACH

EUDAEMON

3

STACK

5

REGISTERS

HEAP

LIBRARIES

ARGOS−USER

FP, MMX

ARGOS−USER

Figure 4.3: Process possession: phase 1

4.4.2 Possession and Release

Process possession and release are two distinct operations that are indepen-
dent in the sense that no state needs to be preserved between the two. In
other words, a possessed process holds all the information needed for its re-
lease. The only prerequisite for these operations is that the emulator library
is present in the target process’s address space.

The finer details of injecting the library in the target process, as well
as activating and deactivating it are in some cases very dependent on the
underlying OS platform. In the remainder of this section, we elaborate on
the implementation details of Eudaemon on Linux.

We use the shared library pre-loading mechanism in Linux to transpar-
ently load the emulator library in the address space of every process. In de-
tail, Linux and other Unix based systems support the pre-loading of dynamic
shared libraries in applications using dynamic linking. This is accomplished
by either defining the environment variable LD PRELOAD to include the de-
sired library, or by including it in a configuration file (like /etc/ld.so.preload).

Eudaemon employs the Unix system call ptrace, which was originally in-
tended mainly for debugging purposes. Much like a debugger, we use ptrace
to achieve possession and release without process and OS cooperation. In
summary, ptrace allows one process to attach itself to another, assuming the
role of its parent. The target is stopped and the attaching process receives
control over it. The attaching process is then able to read the target’s state,
such as register values, floating point (FP) and MMX state, as well as memory
data. It is also able to resume execution of the target process, while receiv-

82 Eudaemon: On-demand Protection of Production Systems

08048000−08049000 r−xp 00000000 03:04 4450978 loop
08049000−0804a000 rw−p 00000000 03:04 4450978 loop
40000000−40016000 r−xp 00000000 03:04 719528 /lib/ld−2.3.6.so
40016000−40018000 rw−p 00015000 03:04 719528 /lib/ld−2.3.6.so
40018000−40019000 r−xp 40018000 00:00 0 [vdso]
40019000−4001a000 rw−p 40019000 00:00 0
40034000−400c1000 r−xp 00000000 03:04 3140602 libseal.so.0.2
400c1000−400c9000 rw−p 0008c000 03:04 3140602 libseal.so.0.2
400c9000−42118000 rw−p 400c9000 00:00 0
42118000−42240000 r−xp 00000000 03:04 719531 /lib/libc−2.3.6.so
42240000−42241000 r−−p 00127000 03:04 719531 /lib/libc−2.3.6.so
42241000−42244000 rw−p 00128000 03:04 719531 /lib/libc−2.3.6.so
42244000−42246000 rw−p 42244000 00:00 0
42246000−42267000 r−xp 00000000 03:04 719535 /lib/libm−2.3.6.so
42267000−42269000 rw−p 00020000 03:04 719535 /lib/libm−2.3.6.so
bfa87000−bfa9d000 rw−p bfa87000 00:00 0 [stack]

Figure 4.4: Contents of a /proc/[pid]/maps file

ing notification of events such as system call execution and signal reception.
This allows Eudaemon to access process state, and to inject the instructions
needed to perform the switch from native execution to emulation and vice
versa.

Process Possession

The possession operation can be logically split in two phases. The first phase
is shown in Fig. 4.3 and consists of the following steps: (1) attach to target
process; (2) discover necessary emulator library symbols in the target; (3)
modify activation shellcode using the symbol addresses acquired during step
2. Each of these steps will be explained in more detail below.

To possess a process we first attach to it, and wait until the target is
effectively stopped by the OS. Subsequently, we look up the target’s runtime
memory mappings to find out the location of the emulator library in its
address space. We accomplish this by looking up /proc/[pid]/maps, where
[pid] is the target PID. This is a file under the special proc filesystem, and
contains a description of the memory mappings used by each process. Fig. 4.4
shows the contents of such a file. Every line of this file corresponds to a
memory mapping and provides information on its address range, protection
bits, size, and source filename if applicable. We are thus able to locate the
address where the emulator library was loaded in the target, as well as in
Eudaemon itself. Observe that libseal is listed twice in the file. The reason
for this is that BSS is also listed.

With this information, we can at runtime look up any emulator symbol in
the target. We accomplish this by also loading the emulator dynamic shared
library in Eudaemon, using dynamic loading and linking, and calculating
the offset of the symbol from the beginning of the dynamic shared library.
The offset of the symbol remains the same in the target, so we can there-
fore calculate the address of the symbol in the target process. Interesting

4.4 Implementation 83

TARGET
PROCESS

ELF
HEADER

trap

mmap2()

ShellCodeEUDAEMON

INJECT

TXT SECTIONargos_isrunning()

CHECK

PROCESS STATE

argos_initandrun(state) LIBRARIES

ARGOS−USER

STACK

HEAP

1

2

3
4

Figure 4.5: Process possession: phase 2

symbols at this point are the function that returns whether the emulator is
already running (seal isrunning()), and the one starting the emulator (seal -
initandrun()). Using their addresses we setup the SEAL activation shellcode
before injecting it in the target.

At this point we read the target process’s state that we need to pass
to the emulator. It consists of the values of general purpose and floating
point registers, as well as state used by MMX instructions. Finally, before
proceeding to the next phase we inject the activation shellcode, in the ELF
header of the executable which contains 240 bytes that remain unused after
loading the binary into memory.

The second phase of possession starts by redirecting the target’s execu-
tion flow to the beginning of the injected shellcode. The actions performed
collectively by Eudaemon and the shellcode are shown in Fig. 4.5, and can
be summarised into the following: (1) check that the target is not already
possessed, (2) allocate a memory block to be used as stack by the emulator
library; (3) store the process state saved during the first phase in the memory
block obtained in step 2; (4) call the initialisation and execution function of
the emulator; (5) detach from the target process.

To avoid starting a possession procedure for an already possessed pro-
cess, we first perform a call into the library to discover whether it is already
running. The return value of the call is placed within the eax register. To
retrieve the result, we place a trap instruction right after the call that returns
control back to Eudaemon, where we can actually check whether we should
proceed with the possession, or fallback reinstating the saved process state
and detach.

Assuming that the process is not already possessed, execution resumes,
and we attempt to allocate a memory area that will be used as a stack

84 Eudaemon: On-demand Protection of Production Systems

dlopen()

TARGET
PROCESS

PROCESS
STATE

ELF
HEADER

1

2

ATTACH

EUDAEMON

HEAP

trap

SAVE

PROC STATE

RESTORE

SHELLCODE

INJECT DEACTIVATION

TXT SECTION

LD_PRELOAD

DISCOVER
LIBRARY SYMBOLS

FP, MMX

argos_stop()

REGISTERS

STACK

LIBRARIES
ARGOS−USER

ARGOS−USER

Figure 4.6: Process release: phase 1

for the execution of the emulator. A new stack is necessary, since sharing
the active stack between the emulator and the emulated code would lead to
error. We use mmap() to request a new memory area from the OS, and
verify its successful completion by using ptrace semantics to receive control
in Eudaemon right after the return of the system call.

Assuming control after the return of mmap() is also necessary to supply
the required arguments to the emulator. The arguments comprise of the
process state that we read during the first phase of the possession, which is
the exact state where native execution stopped. We inject the data into the
newly allocated stack, while also reducing its length by the size of the data
being stored.

Placing the process state in the emulator stack is the last action performed
by Eudaemon, which then detaches and exits. The shellcode within the target
process performs the last step, and calls the emulator main routine, which
initialises itself and starts the emulation.

Process Release

Releasing a process is also partitioned in two phases with the first being
similar to possession. An overview is shown in Fig. 4.6, and the additional
steps in respect to possession (listed in Section 4.4.2) are the following: (1)
call the emulator’s stop routine, and at the same time discover whether it was
running; (2) reinstate the saved process saved state, and allow it to resume
execution.

Just like in possession, Eudaemon also attaches to the target process,
looks up the required library symbols in the target, sets up the shellcode,
and injects it. The additional assembly code introduced in the process does

4.4 Implementation 85

trap

PROCESS

ELF
HEADERREAD EMULATOR

STATE

TARGET

ARGOS−USER

LIBRARIES

HEAP

TXT SECTIONargos_initandrun()

RESTORE PROC

EUDAEMON

REGISTERS
FP MMX

STATE

munmap()

mmap2()

STACK

2

1

3

Figure 4.7: Process release: phase 2

not overlap with the shellcode injected during possession, and is quite small
in size. It simply calls the seal stop() function in the emulator, requesting it
to exit. The same function also checks that the emulator is running, so there
is no need to perform an additional call to retrieve its state beforehand.

If the process was possessed, seal stop() initiates an exit from the emulator
and reports success, while otherwise it returns error. We receive control back
in Eudaemon, by inserting a trap instruction right after the call. We proceed
to read its return value to determine whether the release request was valid,
in which case Eudaemon waits for the emulator to exit. In any other case, it
restores the saved process state allowing it to resume execution uninterrupted.

When the emulator exits, execution returns to the original shellcode
planted during possession. The remainder of that code in conjunction with
Eudaemon is responsible for switching a process’s execution back to normal.
Fig. 4.7 shows an overview of this procedure, which in brief is: (1) recover
the emulated process’s state, stored in the emulator stack; (2) release the
memory block that is used as stack; (3) restore the state read in step (1) as
native process state.

As soon as the emulator exits, a trap instruction is executed to notify
Eudaemon of the event. We then re-read the target’s state to discover the
address of the stack being used, and consequently the location of the emulator
state that corresponds to the real process state we need to reinstate for release
to be carried out. After recovering the state, the target is resumed and the
stack we allocated is freed using munmap(). Once again, we use ptrace se-
mantics to receive control when this system call returns, to finally reinstate
process state. Finally, we detach from the process effectively completing the

86 Eudaemon: On-demand Protection of Production Systems

bunzip2 wget sftp konqueror
Native Execution 27.99s 10.97MB/s 14.3MB/s 29.4ms

SEAL (1 byte tags) 242.24s 10.92MB/s 2.3MB/s 463.4ms
Slowdown (factor) ×8.6 ×1 ×6.3 ×15.6
Argos (1 byte tags) 508.66s 0.90MB/s 0.55MB/s n/a
Slowdown (factor) ×18.2 ×12.2 26 n/a

SEAL (1 bit tags) 248.78s 10.93MB/s 2.3 725ms
Slowdown (factor) ×8.9 ×1 ×6.3 ×24.5
Argos (1 bit tags) 635.15s 0.49MB/s 0.47MB/s n/a
Slowdown (factor) ×22.7 ×22.4 26 n/a

Table 4.1: Emulation overhead

release of the process.

4.5 Evaluation

We evaluate how Eudaemon performs in two aspects: the overhead induced on
an application when executing under the emulator, and the cost of possessing
and releasing.

4.5.1 SEAL

To evaluate the overhead imposed on an application when emulated by SEAL,
we measured the performance of a set of UNIX programs when run natively
and when emulated by SEAL. We also compare against the Argos full-system
emulator. Our benchmark consists of one CPU-intensive application with
little I/O (bunzip2), non-interactive network downloader with little CPU
utilisation (wget), a network downloader with encryption (sftp), and one
interactive graphical browser that performs both downloading and rendering
(konqueror). Konqueror is the official web browser and file manager for KDE.
With this mix of applications, we have covered the spectrum of use cases for
Eudaemon fairly well so that the results represent a faithful indication of
expected performance in general.

The experiments were conducted on a dual IntelTM Xeon at 2.80 GHz
with 2 MB of L2 cache and 4 GB of RAM. The system was running Slack-
Ware Linux 10.2 with kernel 2.6.15.4. The versions of the utilities used were
bzip2 v1.0.3, GNU wget v1.10.2, and konqueror 3.5.4.

We used bzip2 to decompress the Linux kernel 2.6.18 tar archive which
amounts to about 40 MB of data. We used the UNIX utility time to mea-

4.5 Evaluation 87

sure the execution time of the decompression. For wget, and sftp we fetched
the same file from a dedicated HTTP server over a 100 Mb/s LAN. In the
experiment we used wget and wget ’s own calculation of the average trans-
fer rate as performance measure. Finally, we measured the time needed
by konqueror to load and draw an HTML page along with a style sheet.
We used the loadtime browser benchmarking utility available from http:
//nontroppo.org/test/Op7/loadtime.html to conduct the measurement,
but had it loaded locally to avoid incorporating variable network latencies in
the experiment. Because of clock skew, a well-known problem with Qemu,
we could not measure this test reliably on Argos. Table 4.1 shows the results.

We observe that compared to native execution bunzip2 under SEAL re-
quires about 8.5 times more time to complete. The overhead is fairly large,
but this was expected and can be mainly attributed to the dynamic transla-
tor and the additional instrumentation. Nevertheless, it is much lower than
the performance penalty suffered when using the Argos system emulator (i.e.,
if we run the entire OS on Argos), which compared to a native system was
reported to run at least 16 to 20 times slower. Furthermore, using Eudaemon
we can choose when to employ emulation, reducing user inconvenience caused
by the slowdown to a minimum.

The results from wget are quite different. The network transfer of a
file was subject to insignificant performance loss. Wget performs no data
processing, and the sole overhead is imposed by the instrumentation of read
and write calls. The results are encouraging enough to allow for the possibility
of running I/O dominated services such as FTP and file sharing entirely in
emulation mode.

sftp incurs a slowdown of a factor 6.3. In our opinion, this is surprisingly
good considering all the operations on tainted data involved in ssh. In other
work, the reported overhead is more than two orders of magnitude [64]. We
suspect that the difference is caused by the fact that Eudaemon attaches on
the application after a shared secret key has already been established, and
therefore does not suffer the initial expensive connection set up that uses
asymmetric encryption.

Konqueror yields the worst results. We ascribe this to the fact that the
GUI, as well as rendering the content, uses many instructions that incur much
overhead in emulation, including floating point operations as well as MMX
operations.

4.5.2 Eudaemon

Another important performance metric for Eudaemon is the time it takes to
possess and consequently release a process. We examine these two operations

http://nontroppo.org/test/Op7/loadtime.html
http://nontroppo.org/test/Op7/loadtime.html

88 Eudaemon: On-demand Protection of Production Systems

Eudaemon Action Possession Release
1st phase 1.195 0.159
Waiting time not applicable 2782.617
2nd phase 0.095 0.106
Total 1.290 2782.882

Table 4.2: Eudaemon micro-timings (msec)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

10 50 100 200

T
im

e
(s

ec
s)

Number of Processes

Low−load possession average

(a) Low CPU load

 0

 100

 200

 300

 400

 500

 600

10 50 100 200

T
im

e
(s

ec
s)

Number of Processes

High−load possession average

(b) High CPU load

Figure 4.8: Scaling of process possession

from two various aspects. First we measure the time needed to possess and
release a single process, by calculating the time spent on each of the two
phases of the operations. Second we measure how process possession scales
with an increasing number of targets.

Table 4.2 shows the total time needed for the possession and release of a
single process, as well as how this time is distributed amongst the different
phases as they were presented in Section 4.4. Possession of a single process
takes very little time to complete. Release spends even less time performing
the two phases, but it is delayed due to waiting for the emulator to exit
gracefully. To clarify this point we present the main execution loop of SEAL:

while (honeypot_mode == true) {
run_instruction_block();
handle_system_call();
handle_signals();

}

After the completion of the second release stage, Eudaemon is blocked
waiting for the current block of emulated instructions to conclude, and the
emulator to exit its main loop. As a result the target process is not blocked
during this time, and the observed delay is small.

4.6 Conclusions 89

To measure the performance of Eudaemon when multiple process are pos-
sessed, we created an increasing number of processes, which we proceed to
possess. Fig. 4.8 shows the time needed to switch a number of processes from
native to emulated execution, under low and high CPU load. The results also
include the time needed to retrieve the PIDs of processes using ps, as well
as to fork() a separate Eudaemon process to perform the possession for each
target. In the left graph we possess idle processes that at the time of pos-
session are within sleep(), while in the right graph we possess CPU intensive
processes with 100% host CPU utilisation. Even though performance is lower
in the latter, in both cases Eudaemon scales reasonably well. We believe that
this experiment supports our claim that Eudaemon’s performance is suitable
for the idle-time honeypots and honey-on-demand scenarios as presented in
Section 4.1.

For a security evaluation of SEAL/Argos the reader is referred to Sec-
tion 3.5.2.

4.6 Conclusions

We have described Eudaemon, a technique that allows us to grab a running
process and continue its execution in safe mode in an emulator. The emulator
provides extensive instrumentation in the form of taint analysis to protect the
application. It allows us to turn a machine into a honeypot in idle hours, or
to protect applications that are about to perform actions that are potentially
harmful. We have shown that the performance overhead of Eudaemon on
Linux is reasonable for most practical use cases. To the best of our knowl-
edge, this is the first security system that allows one to force fully native
applications to switch to emulation in mid-processing. We believe it provides
an interesting instrument to increase the security of production machines.

90 Eudaemon: On-demand Protection of Production Systems

Chapter 5

Decoupled Security for
Smartphones

“Nothing is impossible if you can delegate.” - Unknown

5.1 Introduction

Smartphones have come to resemble general-purpose computers: in addi-
tion to traditional telephony stacks, calendars, games and address books, we
now use them for browsing the web, reading email, watching online videos,
and many other activities that we used to perform on PCs. Additionally, a
plethora of new applications, such as navigation and location-sensitive infor-
mation services, are becoming increasingly popular.

The Problem As software complexity increases, so does the number of
bugs and exploitable vulnerabilities [61, 116, 84, 112]. Vulnerabilities in the
past have allowed attackers to use Bluetooth to completely take over mobile
phones of various vendors, such as the Nokia 6310, the Sony Ericsson T68,
and the Motorola v80. The process, known as bluebugging, exploited a bug
in Bluetooth implementations. While these are older phones, more recent
models, such as the Apple iPhone have also shown to be susceptible to remote
exploits [108, 100].

Moreover, as phones are used more and more for commercial transactions,
there is a growing incentive for attackers to target them. Credit card numbers
and passwords are entered in phone-based browsers, while Apple, Google, Mi-
crosoft and other companies operate online stores selling applications, music,
and videos. Furthermore, payment for goods and services via mobile phones
is provided by Upaid Systems and Black Lab Mobile. Companies like Ver-

92 Decoupled Security for Smartphones

rus Mobile Technologies, RingGo, Easy Park, NOW! Innovations, Park-Line,
mPark and ParkMagic all use phones to pay for parking, and yet others focus
on mass-transit, such as for instance, HKL/HST in Finland and mPay/City
Handlowy in Poland that both allow travellers to pay for public transport by
mobile phone over GSM.

We see that both opportunity and incentive for attacking smartphones
are on the rise. What about protective measures? On the surface, one might
think this is a familiar problem: if phones are becoming more like computers,
there is existing technology and ongoing research in fighting off attacks to
PCs and servers. Unfortunately, it may not be feasible to apply the same
security mechanisms in their current form.

While smartphones are like small PCs in terms of processing capacity,
range of applications, and vulnerability to attacks, there are significant dif-
ferences in other respects, most notably power and physical location. These
two aspects matter when it comes to security. First, unlike normal PCs,
smartphones run on battery power, which is an extremely scarce resource.
For instance, one of the main points of criticism against Apple’s iPhone 3G
concerned its short battery life [102]. Vendors work extremely hard to pro-
duce efficient code for such devices, because every cycle consumes power, and
every Joule is precious.

As a consequence, many of the security solutions that work for PCs may
not be directly portable to smartphones. Anti-virus file scanners [99], re-
liable intrusion detection techniques [91], and other well-known techniques
all consume battery power. While the occasional file scanning may be rela-
tively cheap, more thorough security checks in light of the increasing software
complexity and the threat of code injection attacks are pushing the likely se-
curity overhead upwards. Furthermore, for many organisations, such as law
enforcement, banks, governments, and the military, the use of phones is both
critical and sensitive, and cannot be subjected to the same aggressive security
restrictions at the policy level that are common for their office intranets1.

For high-grade security, it is desirable to run a host of attack detection
methods simultaneously to increase coverage and accuracy. However, doing
so exacerbates the power problem and may even incur some unacceptable
slowdowns. Indeed, some of the most reliable security measures (like dynamic
taint analysis) are so heavyweight that they can probably never be used on
battery-powered mobile devices, unless we make significant changes to the

1A high-profile case in point is U.S. president Barack Obama’s struggle to keep his
Blackberry smartphone, after he was told this was not possible due to security concerns.
Eventually, it was decided that he could keep an extra-secure smartphone and months of
speculation followed about which phone, its additional security measures, and the tasks for
which he is permitted to use it.

5.1 Introduction 93

hardware. Battery life sells phones, and consumers hate recharging [102].
The likely result is that both vendors and consumers will trade security for
battery life.

Second, phones are required to operate in unprotected or even hostile
environments. Unlike traditional computers, phones go everywhere we go,
and attacks may come from sources that are extremely local. A person with
a laptop or another smartphone in the same room could be the source of a
Bluetooth or WiFi spoofing attack [2]. That means that traditional perimeter
security in general is insufficient, and even mobile phone security solutions
that are based exclusively on “upstream” scanning of network traffic [28] will
never even see the traffic involved in attacking the phone.

Worse, phones are small devices, and we do not always keep an eye on
them. We may leave them on the beach when we go for a swim, slip them
in a coat or shopping bag, forget them on our desks, etc. Theft of a phone
is much easier than theft of a desktop PC or even a laptop. Attackers could
‘borrow’ the phone, copy data from it, open it physically, install back-doors,
etc. For instance, after the bluebugging vulnerability mentioned above was
fixed, phones could still be compromised as long as the attacker was able to
physically access the device [84]. This is an important difference with the
PCs we have sitting on our desks.

In summary, the trends are not favourable. On the one hand, mobile
phones are an increasingly attractive target for attackers. On the other hand,
because of power limitations and increased exposure to hostile environments,
phones are inherently more difficult to protect than traditional computers.

Our Approach: Attack Detection on Remote Replicas At a high-
level, we envision that security (in terms of detecting attacks) will be just
another service to be devolved from the mobile device and hosted in a separate
server, much like storage can be hosted in a separate file server, email in a
mail server, and so on. Whether or not this is feasible at the granularity
necessary for thwarting today’s attacks has been an open research question,
which we attempt to answer in this chapter.

More specifically, we explore the feasibility of decoupling the security
checks from the phone itself, and performing all security checks on a syn-
chronised copy of the phone that runs on a dedicated security server. This
server does not have the tight resource constraints of a phone, allowing us to
perform security checks that would otherwise be too expensive to run on the
phone itself. To achieve this, we record a minimal trace of the phone’s execu-
tion (enough to allow the security server to replay the attack and no more),
and subsequently transmit the trace to the server for further inspection. The
implementation of the full system is known as Marvin. It is illustrated in

94 Decoupled Security for Smartphones

encode/filter

secure
storage

logflush replayer

proxy API

Smartphone
emulator

instrumentation

RECORD REPLAY

Mirrored
traffic

Data

UMTS,
Internet,…

logging
data PROXY

regular
traffic

mirrored
traffic

atrace

Figure 5.1: Marvin architecture

Fig. 5.1.
Our approach is consistent with the current trend to host activities in

centralised servers, possibly consolidated in a cloud, including security-related
functions. For instance, Oberheide et al. have explored antivirus file scanning
in the cloud [110], and have more recently highlighted the opportunity for
doing the same for mobile devices [111].

Although we subscribe to this trend at a high-level, we take a more ag-
gressive approach to protection, especially considering the underlying threat
landscape. Software on smartphones itself has frequently shown to be vulner-
able to attacks for which the file scanning model is insufficient [84, 50, 112].
We therefore aim to prevent attacks on the phone software itself, focusing on
exploits against client applications (as we have done on Chapter 4, and also
covering misbehaving code installed by the user, and even cross-site script-
ing attacks. This is much more involved than scanning files for signatures.
Nevertheless, our design still enables all the security checks to be pushed to
an external security server.

Our solution builds on work on virtual machine (VM) recording and re-
playing [46, 159, 104, 29, 47]. Similar to these approaches, we record the
execution of software running on a mobile phone and replay the exact trace
on the security server. Rather than recording and replaying at VM level, we
record the trace of a set of processes. We tailor the solution to smartphones,
and compress and transmit the trace in a way that minimises computational
and battery overhead. In addition to the replaying technique itself and the
steps we take towards minimising the trace size, an important contribution
presented in this chapter is therefore the new application domain for replay-
ing: resource-constrained devices that cannot provide comprehensive security

5.1 Introduction 95

measures themselves.
With the recorded trace, we can apply any security measure we want

(including very expensive ones) and we can run as many detection techniques
as we desire. By allowing heavyweight attack detection solutions, we are able
to detect attacks that could not possibly be detected otherwise. Not only
that, but we make it possible to study the attack in detail. We can replay
attacks arbitrarily, possibly with more detailed instrumentation. And as not
all phones are active at the same time, it is highly likely that replicas of
multiple phones can share one physical machine.

An additional advantage is that loss or theft of a phone does not mean the
loss of the data on it. All data, up to and including the last bytes transmitted
by the phone, are still safely stored on the replica.

Contribution To the best of our knowledge, we are the first to use decou-
pled replaying to provide security for resource constrained mobile devices.
More broadly, we claim that this is the first architecture capable of offer-
ing comprehensive security checks for devices that are increasingly important
for accessing the network, often store or use sensitive information, exhibit a
growing number of vulnerabilities (thus forming attractive targets), and can-
not reasonably afford the security measures developed for less constrained
systems.

Furthermore, we have fully implemented the security architecture on a
popular smartphone (the HTC Dream/Android G1 [66]). The implementa-
tion demonstrates that the approach is feasible, while our experimental anal-
ysis suggests that the tracing and synchronisation cost is reasonable when
compared to the kind of security offered on the server side. While the imple-
mentation is tied to Android, the architecture is not, as our dependencies on
a specific phone or even operating system are very limited, and the Marvin
design applies to other models also.

Implementing a project on the scale of Marvin involves several person
years in programming effort, much of which is spent on solving low-level
engineering problems. Rather than trying to cram these details into this
chapter, we limit ourselves to the most interesting aspects of the architecture
and implementation, and only discuss details when they are essential for un-
derstanding the bigger picture. The remainder of this chapter is organised
as follows. Section 5.2 presents a brief overview of the threat model and
the likely configuration in terms of function placement. Section 5.3 outlines
the proposed system architecture and the key design decisions and trade-offs.
Section 5.4 provides details on the tracing techniques and how they can be
made efficient to minimise synchronisation overhead, and Section 5.5 out-
lines the server-side environment for replicating phone state and performing

96 Decoupled Security for Smartphones

security checks. Our experimental analysis of the Android-based implemen-
tation is presented in Section 5.6. Section 5.7 discusses related work that has
influenced our design, and Section 5.8 summarises our research findings.

5.2 Threat Model and Example Configuration

We assume that all software on the phone, including the kernel, can be taken
over completely by attackers. In practice, a compromise of the kernel takes
place via a compromised user-space process. We do not care about the at-
tack vector itself. We expect that attackers will be able to compromise the
applications on the phone by means of a variety of exploits (including buffer
overflows, format string attacks, double frees, integer overflows, etc.). Nor do
we care about the medium: attacks may arrive over WIFI, 3G, Bluetooth,
infrared, or USB.

In the absence of exploits, an attacker may also persuade users to in-
stall malicious software themselves by means of social engineering. Typical
examples include trojans disguised as useful software.

Depending on the attack detection solutions that we provide on the secu-
rity server, Marvin allows us to detect any and all of these types of attacks.
To illustrate the power of the design, we implemented a security server that
implements detection of code injection attacks by way of dynamic taint anal-
ysis [42, 107, 91].

As we have seen in previous chapters, dynamic taint analysis is a very
powerful intrusion detection technique that is able to detect exploits (buffer
overflows, format string attacks, double frees, and so on) that change the
control flow of the program. However, it is also extremely expensive. For
this reason, it is unlikely that taint analysis can ever be applied on the phone
itself.

5.3 Architecture

A high-level overview of the Marvin architecture is illustrated in Fig. 5.1.
We sketch the basic idea first and zoom in on various optimisations (such
as the proxy and secure storage) in later sections. A tracer on the phone
intercepts system calls of, and signals to, the set of processes that need pro-
tection. This set comprises all processes on the phone that may be attacked.
It is typically a large set that includes the browser, media players, system
processes, and so on). A replayer on the security server subsequently replays
the execution trace, exactly as it occurred on the phone, while subjecting
the execution to additional instrumentation. The transmission of the trace

5.3 Architecture 97

is over an encrypted channel.

5.3.1 A Naive Implementation: Sketching the Basic Idea

A naive implementation would intercept and record all signals, all system
calls, all the system calls’ results, and all reads from and writes to shared
memory. As soon as it records any of these events, it would transmit it
immediately to the security server. The security server executes exactly the
same processes on an exact replica of the system. Like the tracer, the replayer
also intercepts all system calls and signals. Whenever it encounters a system
call, it looks in the trace for the same call. At that point, it will not really
execute the system call, but instead return the results that it finds in the
trace.

Signals need special treatment. Because of their asynchronous delivery,
they introduce nondeterminism. More precisely, since we do not know the
exact moment of delivery on the phone and on the replica, they may cause
race conditions. To ensure that signals are delivered at the same point both
in the phone and in the mirrored execution on the security server, we do
not deliver signals until the target process performs a system call. When the
system call returns, we post the signal for immediate delivery. As both sides
handle signals in exactly the same way, we synchronise signals delivery on
the phone and the security server.

This way, we are almost able to replay the execution faithfully. The
remaining issue concerns thread scheduling. As the kernel-level schedulers
in phone and replica operate independently, it may be that threads on the
replica are scheduled in an order different from that on the phone. For un-
related processes this is not a problem, but for threads that share memory
(e.g., multithreaded applications), it is important that the scheduling order
is preserved.

The simplest and fastest way to solve this problem is to modify the kernel
scheduler. Of course, doing so limits portability and makes it difficult to apply
our architecture to closed source systems. For now, we will assume that we
have a kernel scheduler that schedules the threads exactly the same in both
the phone and the security server. In Section 5.4, we will show an alternative
way that enforces a schedule on the threads over the schedule generated by
the kernel. Either method works as long as it satisfies the following two
requirements: (1) two memory-sharing threads should never run at the same
time, and (2) scheduling should be deterministic.

For now, we want to point out the flexibility that we have in terms of
security measures. Given the trace, we can replay the execution as often as we
like and employ any security measure we want, either one after another, or in

98 Decoupled Security for Smartphones

parallel. For instance, we can look for anomalies in system call patterns [123,
58], while at the same time applying dynamic taint analysis [42, 107, 91], and
n-version virus scanning [111, 110].

A possible drawback is that there is a lag between the attack and its
discovery (and possibly analysis). However, if the alternative is that the
attack would not be detected at all, detecting an attack a few seconds after
it infected the device still seems quite valuable [29].

As long as we can keep the cost of recording and transmitting the ex-
ecution trace within reasonable bounds, the design above yields a powerful
model to detect, stop and analyse attacks. We will shortly discuss various
techniques to bring down the costs. There are three more issues that we need
to discuss first: (i) where to place the security server, (ii) when to transmit
the trace data, and (iii) how to warn the user when an attack is detected.

5.3.2 Location of the Security Server

Where to host the security server is a policy decision beyond the scope of
this thesis. Rather than prescribing the right policy, we discuss three possible
models. While the first of these models is the simplest and allows for most
optimisation, we do not preclude the others. In practice, the optimal location
of the security server is a trade-off between costs, privacy concerns, reliability,
and performance.

In the most straightforward model, the security server is a service offered
by the provider. The provider can use its security service to differentiate itself
from other providers and to generate income by charging for the service. In
addition, it is ideally suited for offering the service. Much of the data to and
from the mobile phone is routed via the network provider. Routing the traffic
via a security server is easy and cheap. While there may be concerns about
privacy, we observe that even today many applications and data already
reside in various ‘clouds’ and that much of the private data is already passing
through the equipment of the providers. We trust the providers to respect
the privacy of their clients.

However, alternative models are also possible. In a business environment
where phones are provided by a company, the company may host its own
security server. Sensitive business data will be stored only on company com-
puters and the organisation can decide for itself what security measures to
apply. The model requires that all phone communication is routed through
the security servers in the company’s server room. An extreme case would
allow end users to run the replicas on their home machines. Doing so gives
users full control over their data, at the cost of paying the provider to reroute
the traffic plus the cost of the security server itself.

5.3 Architecture 99

5.3.3 When to Transmit Trace Data

So far, we have assumed that the phone transmits the trace data immedi-
ately. In practice, however, this is probably not necessary. Transmitting data
immediately implies that one of the device’s network adaptors (e.g., 3G or
WiFi) must be turned on continuously, which would use up power quickly.
Furthermore, transmission cost per byte in power is lower if multiple events
can be batched. Consequently, batching data before transmitting would save
energy. The key insight is that we only need to transmit if there is a chance
that the phone is compromised [132]. This is the case when the phone re-
ceives data from the network (be it over 3G, WIFI, USB, or Bluetooth), but
not when processes on the phone exchange messages or when users update
their calendars. In other words, we may be able to batch the trace data until
we receive data that could potentially lead to a compromise.

Moreover, if the phone is fitted with secure storage that provides evidence
of tampering even if the phone is completely under the control of the attacker,
we may batch data arbitrarily. In that case, we save all the trace data in
secure storage and sync with the security server at a convenient time (for
instance, every hour, or once a day). In the extreme case, we switch to offline
checks, where the phone only synchronises when it is recharging and battery
life is thus no longer an issue.

Secure storage means that the attacker may falsify the events sent to the
trace since the attack, but not any of the events that lead to the attack [156,
133]. Keeping the trace in storage for longer, also means that the attack can
be active for a longer time. However, we will eventually discover it. Moreover,
it means minimal overhead in battery consumption.

We shall see in Section 5.4.3 that Marvin includes a secure storage imple-
mentation that can guarantee the authenticity of all messages that lead to
the attack without need for specialised hardware or VM isolation.

5.3.4 Notifying the User of an Attack

When Marvin detects an attack, it needs to warn the user, so that the user
can start recovery procedures. This is not trivial. Sending an SMS or email
message to say that the phone has been compromised may not work, as the
phone is under the control of an attacker and the attacker may block such
messages.

We have implemented a mechanism that allows us to download a clean
image of the system including kernel, system files, and user data (as they were
before they attack occurred), which is installed when restarting the device
bringing the system to a “safe” state. This is an optimistic approach, as an
adept hacker could disable the entire mechanism. A really reliable solution

100 Decoupled Security for Smartphones

requires hardware support that would enable us to securely restore system
state under all circumstances. For instance, we could use what is known as a
‘kill pill’ on Blackberry phones: hardware that allows administrators to trash
all data on a stolen or lost phone via a remote connection.

An alternative method (assuming lack of hardware support) could display
a warning message on the display, and render the phone incommunicado on
GSM, GPRS, UMTS, and other networks under control of the operator. This
would inform the user that something is wrong, and force them to take action
by, for instance, plugging the device to a computer, and restoring it to an
acceptable state.

5.4 Recording in Practice

To make our architecture practical, we argued in Section 5.3 that the overhead
of recording and transmitting the execution should be kept small both in
computation and size. In this section, we will discuss how we achieved this in
practice by means of various optimisations of the design. The implementation
is known as Marvin and runs on an HTC Dream / Android G1, one of the
latest 3G smartphones based on the open source Android software platform
and operating system. The G1 in its default configuration comes with a host
of applications, including a browser, mail client, media player, and different
types of messaging applications.

The security server hosts replicas of multiple phones, running a replica of
each on a Qemu-based Android emulator, which is part of the official SDK.
For each replica one or more detection methods are applied, ranging from
n-version virus scanning, to dynamic taint analysis.

5.4.1 Tracing on Android

For our implementation of Marvin on Android, we adopted a user-space ap-
proach based on the ptrace system call, which allows us to attach to arbitrary
processes, and intercept both system calls and signals. By using ptrace we
are able to track a system’s processes, and receive event notifications each
time they interact with the kernel. Events received include system call entry
and exit, creation and termination of threads, signal delivery, etc.

Tracing from the Start

Marvin ensures that the tracing of relevant programs starts from the first
instruction by means of a clean, two-step procedure that is illustrated in
Fig. 5.2. In UNIX tradition, Android uses the init process to start all

5.4 Recording in Practice 101

1

2
3

exec
app

stubtracer

init

exec
app

stub

fifo
start app

trace

’trace me’

tracer
start

.

4

5
6

6

Figure 5.2: Tracing the processes from init

other processes, including the client applications such as a browser and media
players, but also the JVM, and so on). Init in Marvin brings up the tracer
process first. The tracer initialises a FIFO to allow processes that need tracing
to contact it. Next, init starts the other processes. Rather than starting
them directly, we add a level of indirection, which we call the exec stub. So,
instead of forking a new thread and using the exec system call directly to
start the new binary, we fork and run a short stub. The stub writes its process
identifier (pid) to the tracer’s FIFO (effectively requesting the tracer to trace
it) and then pauses. Upon reading the pid, the tracer attaches to the process
to trace it. Finally, the tracer resumes the paused process. The stub then
executes the appropriate binary with the corresponding parameters.

Issues

Several complicating factors demand further attention.

SIGKILL ptrace cannot delay the delivery of SIGKILL and hence will not
let the tracer intercept and defer it. To overcome this we intercept the signal
at the source instead of the destination. Whenever a process sends a SIGKILL
to another process, the tracer circumvents the kernel, and takes over the task
of delivering the signal to the target, as well as recording the event.

Userspace scheduling A user-space implementation poses a challenge for
the two scheduling requirements discussed in the previous section: (1) two
threads that share memory should never run at the same time, and (2) schedul-
ing should be deterministic. Rather than assuming that we can modify the
kernel scheduler (or even receive scheduling events from the kernel), we opt

102 Decoupled Security for Smartphones

SIGWAIT

RUNNING

Deliver
signal

Scheduler

Signal

No

Yes

Discover
task groupNEW TASK

INSYSCALL

Spinlock
detector

Check execution
threshold of running
threads

SINGLE-
STEPPING

Threshold
exceeded

False
detect ion

system call

Spinlock
found

system call
exi t

Dequeue task
if none is
running

Init iate
signal
del ivery

RUNNABLE

WAIT
QUEUE

Figure 5.3: Scheduler FSM

for a user-space-only solution to allow our system to be ported to less open
systems than Android.

Recall that the tracer intercepts both system call entry and exit, and
signal delivery events. When the tracer receives such an event, it can decide
to resume the thread, or delay its execution (e.g., by placing it on a waiting
queue for later resumption). In other words, we have the functionality to
determine which thread is run when. The aim is to enforce our own scheduling
over the scheduling by the kernel.

We organise threads that share memory in task groups and maintain a run
queue of runnable threads that are waiting to be run. Each of the threads can
be in one of five states (see Fig. 5.3 for the finite state machine that controls
the transitions):

1. RUNNING: the thread is currently running;

2. RUNNABLE: the thread is ready to run but waiting in the run queue;

3. INSYSCALL: the thread has entered a syscall;

4. SIGWAIT: the thread is waiting for a signal;

5. SINGLESTEPPING: a special state that is used to detect spinlocked
threads (discussed later).

To satisfy requirement (1) we ensure that only one thread per group is
in the RUNNING or SIGWAIT state. These states comprise all threads that

5.4 Recording in Practice 103

are ‘active’. From the perspective of our scheduler, threads that enter the
kernel on a system call are not active. They are not on the run queue either,
since they are not ready to run. A thread waiting for a signal to be delivered
(SIGWAIT) is ‘pre-running’ and makes a transition to the RUNNING state
immediately upon signal delivery. A thread exiting from a system call is not
resumed immediately, but is instead appended in RUNNABLE state to the
back of the group’s queue. The scheduler will decide on the scheduling and
ensures that a thread can only make a transition to SIGWAIT or RUNNING
if no other thread of the group is in either of these states. To satisfy require-
ment (2) we set the scheduler to run right after a deterministic event. Since
system calls are deterministic, the scheduler is called after entry to or exit
from a system call. When that happens it schedules the task at the head of
the queue, and any pending signal is also delivered.

Sometimes processes share memory using mechanisms in the kernel. As
in multithreaded applications, such sharing memory may introduce nondeter-
minism in the system. To cater to this issue, we have extended the scheduler
to merge the run queue of processes that share a memory segment. Doing so
ensures that all the threads sharing some memory are scheduled exclusively.

Spinlocks The scheduling solution above works well in practice. However,
the scheduling that we force upon threads may lead to deadlocks when user-
space threads use spinlocks. Spinlocks are considered to be bad program-
ming practice for mobile device applications, because in terms of CPU cycles
they are a wasteful way to perform locking. We have not encountered such
deadlocks in Android, where other “sleeping” methods such as futexes are
preferred (futexes perform a system call in case of contention). Nevertheless,
we dealt with this potential issue by means of a spinlock detector which we
tested on synthetic examples.

Marvin periodically activates a spinlock detector to look for tasks that
are potentially within a spinlock. The detector marks tasks as ‘possibly spin-
locked’ if they are in the RUNNING state (see Fig. 5.3) and the time since
their last system call exceeds a threshold. As the situation is so rare, we
optimistically set the threshold to a few seconds so that spinlock detection
creates minimal overhead. A possibly spinlocked thread is moved to the SIN-
GLESTEPPING state. We then single-step the thread to check whether it
really is within a spinlock (e.g., we check whether it is running in a tight
loop and we may test other properties also). When the thread is not spin-
locked, it returns to RUNNING. If it is, however, Marvin sets the thread’s
state to RUNNABLE, appends it to the back of the run queue and schedules
another thread. As the thread that is holding the lock will eventually run,
the deadlock is removed.

104 Decoupled Security for Smartphones

Memory mapped by hardware Some memory, like the frame buffer, is
mapped by hardware. This is not a problem in practice, as the memory access
is essentially write only (e.g., the hardware writes bits to the framebuffer,
which are not read by applications). However, it could be a problem in the
future in a different hardware/software combination, if processes were to read
the values produced by the hardware. In that case, we will probably have
to record all reads to this memory area (to reproduce the same values at the
replica). For instance, by mapping the area inaccessible to the reader, we
could intercept all read attempts to this memory as page faults, but doing
so would be expensive. Fortunately, we have had no need for this in our
implementation.

I/O control Finally, I/O control, usually performed using the ioctl sys-
tem call, is part of the interface between user and kernel space. Programs
typically use ioctls to allow user-land code to communicate with the kernel
through device drivers. The interface is very flexible and it allows the ex-
change of data of variable length with few restrictions. Each ioctl request
uses a command number which identifies the operation to be performed and
in certain cases the receiver. Attempts have been made to apply a formula
on this number that would indicate the direction of an operation, as well
as the size of the data being transferred [26]. Unfortunately, due to back-
ward compatibility issues and programmer errors actual ioctl numbers do
not always follow the convention. As a result, the tracer needs knowledge of
each command number, so that it is able to identify and log the data being
read into user-space. Obtaining this metadata is a tedious procedure, since
it requires referring to the kernel’s source code. Luckily, a lot of metadata
for common ioctl commands are available in various user-space emulators
which saved us a lot of time.

5.4.2 Pruning Redundant Data: Trimming the Trace

The design above allows us to trace any process and replay it to detect attacks
at the mirrored execution on the security server. Using ptrace is attractive,
as it allows us to implement the entire architecture in user-space, with the
sole exception of secure storage (see Section 5.4.3 for details about secure
storage). A user-space implementation facilitates portability and allows the
Marvin architecture to be applied to other phones even if the software on
these phones is closed by nature, as long as they provide a tracing facility
comparable to ptrace. However, from a performance point of view, system
call interception in user-space is not the most optimal solution, as context
switching is computationally costly. Most of the overhead can be removed by

5.4 Recording in Practice 105

implementing system call interception in the kernel.
The main challenge in either case is to minimise transmission costs. All

aspects of the execution that can be reconstructed at the security server
should not be sent. In the next few sections, we will discuss how we were
able to trim the execution trace significantly. Each time, we will introduce a
guiding principle by means of an example and then formulate the optimisation
in a general rule.

Assuming that the phone and the replica are in sync, we are only in-
terested in events that (a) introduce nondeterminism, and (b) are not yet
available on the replica. In principle, replica and phone will execute the same
instruction stream, so there is no need to record a system call to open a
file or socket, or to get the process identifier, as these calls do not change
the stream of instructions being executed. Phrased differently, they do not
introduce nondeterminism. We summarise the above in a guiding principle:

Rule 1. Record only system calls that introduce nondeterminism.

Similarly, even though the results of many system calls introduce non-
determinism in principle, they still can be pruned from the trace, because
the results are also available on the replica. For instance, the bytes returned
by a read that reads from local storage probably influence the subsequent
execution of the program, but since local storage on the security server is
the same as on the phone, we do not record the data. Instead, we simply
execute the system call on the replica. The same holds for local IPC between
processes that we trace. There is no need to transmit this data as the mirror
processes at the security server will generate the same data. As data in IPCs
and data returned by file system reads constitute a large share of the trace
in the naive implementation, we save a lot by leaving them out of the trace.
Summarising this design decision:

Rule 2. Record only data that is not available at the security server.

In some cases, we can even prune data that is not immediately available
at the security server. Data on network connections is not directly seen by
the replica. However, it would be a serious waste to send data first from the
network (e.g., a web server) to the phone, and then from the phone back to
the network to make it available to the security server. Instead, we opted
for a transparent proxy that logs all Internet traffic towards the phone and
makes it available to the security server upon request (see also Fig. 5.1). As a
result, whenever the replica encounters a read from a network socket, it will
obtain the corresponding data from the proxy, rather than from the phone.
In general, we apply the following rule:

106 Decoupled Security for Smartphones

Rule 3. Do not send the same data over the network more than once. Use
a proxy for network traffic.

Besides deciding what to record, we can further trim the trace by chang-
ing how we record it. By encoding the produced data to eliminate frequently
repeating values, we can greatly reduce its size. An out of the box solu-
tion we employed was stream compression using the standard DEFLATE
algorithm [44] which is also used by the tool gzip. Compression significantly
reduces the size of the trace, but being a general purpose solution leaves room
for improvement. We can further shrink the size of the trace by applying delta
encoding on frequently occurring events of which successive samples exhibit
only small change between adjacent values. We found an example of such
behaviour when analysing the execution trace after applying guidelines 1-3.
System calls such as clock_gettime and gettimeofday are called very fre-
quently, and usually return monotonically increasing values. By logging only
the difference between the values returned by two consecutive calls we can
substantially cut down the volume of data they produce. Special provisions
need to be made for clock_gettime, since the kernel frequently creates a
separate virtual clock for each process. As a consequence we must calculate
the delta amongst calls of the same process alone for higher reduction.

In theory, delta encoding could be applied to all time related system calls
with similar behaviour. However, doing so does not always reduce the trace
size. For instance, we applied the technique to reads from /proc/[pid]/stat
files, which also generated significant amounts of data. /proc/[pid]/stat
files are files in Linux’ procfs pseudo file system that are used to track process
information (such as the identifier of the parent, group identifier, priority, nice
values, and start time, but also the current value of the stack pointer and
program counter). Typically, the entire file is read, but only a small fraction
of the file actually changes between reads. As we will show in Section 5.6
the manual delta encoding of such reads may even lead to an increase in
log size. The reason is manual encoding may replace high frequency data
with less efficient encoding. In the final prototype, we therefore dropped this
‘optimisation’.

We use related, but slightly different optimisations when items in the
trace are picked from a set of possible values, where some values are more
likely to occur than others. Examples include system call numbers and return
values, file descriptors, process identifiers, and so on. In that case we prefer
Huffman encoding. For instance, we use a single bit to indicate whether the
result of a system call is zero, and a couple of bits to specify whether one or
two bytes are sufficient for a syscall’s return value, instead of the standard
four. We summarise the principle in the following rule:

5.4 Recording in Practice 107

Rule 4. Use delta encoding for frequent events that exhibit small variation
between samples and Huffman encoding when values are picked from a set of
possible values with varying popularity. Check whether the encoding yields
real savings in practice.

5.4.3 Secure Storage

We argued in Section 5.3.3 that transmitting trace information to the security
server as soon as it is generated uses a lot of power, reducing battery life.
It also requires a continuous connection to the network, which is unlikely.
Instead, data are batched on the mobile device until we receive data over the
network (which could potentially lead to an intrusion).

Batching introduces two security concerns [132]: firstly, the attacker must
be prevented from tampering with the trace information to hide the evidence
of an attack; and secondly, the attacker must be prevented from erasing the
trace data.

We solve the problem of modified trace data by using digital signatures
based on a keyed hash message authentication code (HMAC) [79]. HMAC
enables the authentication of messages, and is based on a secret key and a
cryptographic hash function (e.g., MD5, SHA-1, SHA-2, etc.). The secret key
is established between the phone and the security server, when the systems
starts up and is used to digitally sign the first message. After signing each
message, the key is hashed to produce a new key of equal size, which replaces
the previous key. The old key is completely overwritten, so that an attacker
compromising the phone cannot tamper with messages and re-sign them to
avoid detection from the security server. These mechanisms satisfies the re-
quirements we have set earlier for secure storage by preventing the tampering
of all messages leading to an attack that can fully compromise a device.

The steps taken to make storage tamper-evident can be summarised to
the following:

1. message′ = message + HMAC(key,message)

2. key = HASH(key)

Secure storage alleviates the problem of having to transmit data con-
stantly. Current smartphones like the Apple iPhone 3G and the Android G1
already support microSDHC cards with 16GB of storage. We shall see in
Section 5.6 that with this amount of storage we are able to store an entire
day’s worth of activity locally and only synchronise with the security server
when we recharge the phone at the end of the day.

108 Decoupled Security for Smartphones

5.4.4 Local Data Generation

While we can save on data that is already available ’in the network’ (at
the security server or the proxy), no such optimisations hold for data that
is generated locally. Examples include key presses, speech, downloads over
Bluetooth (and other local connections), and pictures and videos taken with
the built-in camera. Keystroke data is typically limited in size. Speech is
not very bulky either, but generates a constant stream. We will show in
Section 5.6 that Marvin is able to cope with such data quite well.

Downloads over Bluetooth and other local connections fall into two cat-
egories: (a) bulk downloads (e.g., a play list of music files), typically from
a user’s PC, and (b) incremental downloads (exchange of smaller files, such
as ringtones, often from other mobile devices). Incremental downloads are
relatively easy to handle. For bulk downloads, we can save on transmitting
the data if we duplicate the transmission from the PC such that it mirrors
the data on the replica. However, this is an optimisation that we have not
used in our project.

Pictures and videos incur significant overhead in transmission. In appli-
cation domains where such activities are common, users will probably switch
to offline checks, storing the data in secure storage and synchronising only
when recharging the phone. Video conferencing is not possible at all on most
smartphones, including the Android and Apple iPhone models, as the cam-
eras are mounted on the back. Furthermore, it becomes more common that
content generated on mobile devices, such as pictures and videos, is uploaded
on social networking web sites (e.g, Facebook, Twitter, MySpace, etc). In
the future, we could exploit this fact, and proxy the uploaded data to be
retrieved by the security server when required.

5.5 The Security Server

The security server decrypts, decompresses, and validates the trace it receives
from the phone, and writes it to a file. The replica runs exact mirrors of the
execution of the code on the phone in the Android emulator. The emulator
is a QEMU-based application that provides a virtual ARM mobile device
on which one can run real Android applications. It provides a full Android
system stack, down to the kernel level. On top, we run the exact same set of
applications as on the phone. The replica implements one or more security
checks and uses the trace file to remove potential nondeterminism in the
execution (as described previously). Initial execution starts with the same
processor, memory and file system state.

A simple security measure is to scan files in the replica’s file system us-

5.6 Results 109

Booting Idle Calling Web
Browsing

Google
Maps

Audio
Playback

D
at

a
G

en
er

at
io

n
R

at
e

(K
iB

/s
)

0

5

10

15

20

c1 c1 c1 c1 c1 c1c2 c2 c2 c2 c2 c2c3 c3 c3 c3 c3 c3c4 c4 c4 c4 c4 c4c5 c5 c5 c5 c5 c5c6 c6 c6 c6 c6 c6

Compressed
Raw

c1: un−optimized events
c2: huffman−encoded event headers
c3: clock_gettime() delta−encoding
c4: /proc/pid/stat reads delta−encoding
c5: network data cached in proxy
c6: gettimeofday() delta−encoding

Figure 5.4: Data generation rate

ing traditional virus scanners. To increase accuracy and coverage we may
employ multiple scanners at the same time, as suggested in the CloudAV
project [111]. Even more interesting is the application of more heavyweight
protection measures that could not realistically be applied on the phone itself.

To illustrate the sort of heavyweight security checks that are possible
with Marvin, we modified the Android emulator to include dynamic taint
analysis [42, 107, 91], similarly to Argos in Chapter 3. As we have seen, taint
analysis is a powerful, but expensive method to detect intrusions, which would
otherwise be impractical to apply on mobile devices.

5.6 Results

In this section we evaluate our user-space implementation of Marvin. The
recording side (tracer) was ran on an Android G1 developer phone, while
the security server side (replica) ran on the Qemu-based Android emulator,
which is part of the official SDK. We will attempt to quantify various aspects
of the overhead imposed by the tracer on the device, and also evaluate the
various optimisations we described in earlier sections.

5.6.1 Data Generation Rate

We have frequently mentioned that data transmission is costly in terms of
energy consumption and consequently battery life. As such, the amount of
data that our implementation generates and transmits to the replica consists
a critical overhead metric. We calculated the rate the tracer generates data
under different usage scenarios. Fig. 5.4 shows the average rate measured
in KiB/s. The tasks evaluated are from (left to right): booting the device,

110 Decoupled Security for Smartphones

idle operation, performing and receiving a call, browsing the WWW using
randomly selected URLs from a list of popular links [4], browsing random
locations using the Google Maps application, and finally audio playback.

We also evaluate the effectiveness of the optimisations described in Sec-
tion 5.4.2. Six different configurations (c1-c6) were tested in total. Each
configuration introduces another data trimming optimisation, starting from
c1 were no optimisations are used. C2 adds Huffman-like encoding for event
headers. Event headers comprise of common information logged for all sys-
tem calls. Such information include the call number, the pid of the sender,
return value, etc. C3 and c4 add delta encoding for clock_gettime, and
reads from /proc/pid/stat respectively. Finally, c5 uses a proxy to cache
network data, and c6 performs delta encoding for gettimeofday.

Compression was tested with all configurations, since it significantly re-
duces data volume. Fig. 5.4 shows that DEFLATE is the most efficient step
in finding and eliminating repetition than any of our optimisations when net-
work data are not involved, but the other optimisation also reduce the already
small trace even more. Network access scenarios show that caching data us-
ing a proxy is necessary to keep overhead reasonable. Also, as mentioned
earlier, the /proc/pid/stat delta encoding is counter-productive, since the
encoding substitutes high frequency data with less compressible data. We do
not use it in the prototype,

A mobile device usually spends most of its time idle, or it is used for
voice communication. Fig. 5.4 shows that the data generation for these two
scenarios is really negligible, with an average of just 64B/s and 121B/s for
idle and calling respectively. These rates also show that employing secure
storage (Section 5.4.3) to store even an entire days of execution trace locally
is feasible using devices such as the G1 (or the IPhone).

5.6.2 Battery Consumption

Transmission and reception of network data, along with the CPU, and the
display are the largest energy consumers on mobile devices. Marvin directly
affects two of these components, since it requires transmitting generated data
and uses CPU cycles to operate. We evaluated the effect of the tracer on
battery consumption, by using the device to browse the web in a similar
fashion as earlier. Additionally, SSL encryption was employed to protect
the data being transmitted. Encryption itself is probably detrimental to
battery life, but it is necessary. In the future, specialised hardware performing
encryption cheaply could be included in mobile devices, allowing for broader
adoption of encryption.

Fig. 5.5 shows how battery levels drop in time while browsing. As ex-

5.6 Results 111

B
at

te
ry

 le
ve

l(%
)

80

85

90

95

100

Time
0:00 0:10 0:20 0:30

WiFi

3G

WiFi−Marvin

3G−Marvin

Figure 5.5: Battery consumption

pected battery levels drop faster when using Marvin than running Android
natively. We also used both 3G and WiFi to evaluate their impact on battery
life as well. When not using the tracer it is clear that WiFi is more conser-
vative energy-wise. On the other hand, when using Marvin it is unclear if
one is better than the other. On the positive side, our implementation incurs
only a minor overhead on battery life, which, even for a costly operation such
as browsing, does not exceed 7%.

5.6.3 Performance

The tracer also incurs a performance overhead. Fig. 5.6 shows the mean CPU
load average during the experiment described in Section 5.6.2. In both cases
CPU load was higher when using the tracer. Using profiling tools we analysed
the tracer to identify bottlenecks. Table 5.1 shows the top calls where time
was spent in the tracer.

A bit more than 65% is spent in system calls that are responsible for
controlling or waiting for events concerning the traced processes. On the
other hand, DEFLATE only takes up 7.62%. A more optimised, and platform
dependent kernel-space implementation could shed most of the overhead we
see here by eliminating context switching and notification costs, as well as
data copying between address spaces.

112 Decoupled Security for Smartphones

C
P

U
 L

oa
d

A
ve

ra
ge

2

2.5

3

3.5

4

4.5

5

5.5

6

Connection Type
WiFi 3G

Native

Marvin

Figure 5.6: CPU load average

Function Time Spent %
ptrace() %33.63
waitpid() %32.68
deflate slow() % 7.62
pread64() %6.78
mcount in-
terval()

%2.84

event han-
dler run()

%2.15

Table 5.1: Time spent in various
parts of the tracer

usleep parameter (ms)
0 10000 20000 30000 40000

E
la

ps
ed

 ti
m

e

0

10

20

30

40

tracer replica

Figure 5.7: Security server lag

5.6.4 Security Server Lag

For particularly CPU intensive analysis, we expect that the security server
will sometimes lag behind the tracer. Fig. 5.7 shows how varying the average
load will affect the ability of the replayer to keep up with the tracer. This
micro-experiment consists of running a test program that repeatedly com-
presses and decompresses 64KB worth of data. Between the compression and
decompressing step there is a usleep call, with the parameter shown on the
x-axis of the graph. The y-axis shows the elapsed time result of running the
compression/usleep/decompression test 500 times. The tracer runs on the
Android G1 device, and the replayer runs on the Android emulator on an
AMD Athlon64 3200+.

5.7 Related Work 113

The replayer cannot keep up with the real hardware when it comes to
compression and decompression. However, the replayer does not have to
execute the blocking system call (usleep). Therefore, increasing the time
spend in blocking system calls (e.g., when the device is idle) reduces the lag
of the replayer. The results for 0, 10000, and 20000 microseconds delay show
that replayer is essentially unaffected by the delays and takes constant time.
With the delays of 30000 and 40000 microseconds the replayer has to wait
for results from the tracer and will therefore run at the same speed as the
tracer.

5.7 Related Work

The idea of decoupling security from execution has been explored previously
in a different context. Malkhi and Reiter [93] explored the execution of Java
applets on a remote server as a way to protect end hosts. The code is exe-
cuted at the remote server instead of the end host, and the design focuses on
transparently linking the end host browser to the remotely-executing applet.
Although similar at the conceptual level, one major difference is that Marvin
is replicating rather than moving the actual execution, and the interaction
with the operating environment is more intense and requires significant ad-
ditional engineering.

The Safe Execution Environment (SEE) [140] allows users to deploy and
test untrusted software without fear of damaging their system. This is done
by creating a virtual environment where the software has read access to the
real data; all writes are local to this virtual environment. The user can inspect
these changes and decide whether to commit them or not.

The application of the decoupling principle to the smartphone domain
was first explored in SmartSiren [28], albeit with a more traditional anti-
virus file-scanning security model in mind. As such, synchronisation and
replay is less of an issue compared to Marvin. However, as smartphones are
likely to be targeted through more advanced vectors compared to viruses
that rely mostly on social engineering, we argue that simple file scanning
is not sufficient, and a deeper instrumentation approach, as demonstrated in
Marvin, is necessary for protecting current and next generation smartphones.
Oberheide et al. [111] explore a design that is similar to SmartSiren, focusing
more on the scale and complexity of the cloud back-end for supporting mobile
phone file scanning, and sketching out some of the design challenges in terms
of synchronisation. Some of these challenges are common in the design of
Marvin, and we show that such a design is feasible and useful.

The Marvin architecture bears similarities to BugNet [104] which consists
of a memory-backed FIFO queue effectively decoupled from the monitored

114 Decoupled Security for Smartphones

applications, but with data periodically flushed to the replica rather than to
disk. We store significantly less information than BugNet, as the identical
replica contains most of the necessary state.

Schneier and Kelsey show how to provide secure logging given a trusted
component much like our secure storage component [132, 133]. Besides guar-
anteeing the logs to be tamper free, their work also focuses on making it
unreadable to attackers. We can achieve similar privacy if the secure stor-
age encrypts the log entries. Currently, we encrypt trace data only when we
transmit it to the security server.

Shadow honeypots [5] selectively trigger replicated execution when first-
level anomaly detection techniques indicate that an action is potentially
harmful and warrants further inspection. Some of the challenges of state
transfer and replay are common with Marvin, but the focus of this work is
on Web servers which are less constrained in terms of synchronisation cost.

Related to the high-level idea of centralising security services, in addition
to the CloudAV work [110] which is most directly related to ours, other efforts
include Collapsar, a system that provides a design for forwarding honeypot
traffic for centralised analysis [74], and Potemkin, which provides a scalable
framework for hosting large honeyfarms [152].

5.8 Conclusion

In this chapter, we have discussed a new model for protecting mobile phones.
These devices are increasingly complex, increasingly, vulnerable, and increas-
ingly attractive targets for attackers because of their broad application do-
main, and the need for strong protection is urgent, preferably using multiple
different attack detection measures. Unfortunately, battery life and other re-
source constraints make it unlikely that these measures will be applied on the
phone itself. Instead, we presented an architecture that performs attack de-
tection on a remote security server where the execution of the software on the
phone is mirrored in a virtual machine. In principle, there is no limit on the
number of attack detection techniques that we can apply in parallel. Rather
than running the security measures, the phone records a minimal execution
trace. The trace is transmitted to the security server to allow it to replay
the original execution in exactly the same way. The architecture is flexible
and allows for different policies about placement of the security server and
frequency of transmissions.

The evaluation of an implementation of the architecture in user-space,
known as Marvin, shows that transmission overhead can be kept well below
2.5KiB/s after compression even during periods of high activity (browsing,
audio playback) and to virtually nothing during idle periods. Battery life is

5.8 Conclusion 115

reduced by 7%. We conclude that the architecture is suitable for protection
of mobile phones. Moreover, it allows for much more comprehensive security
measures than possible with alternative models.

116 Decoupled Security for Smartphones

Chapter 6

Conclusion

The main goal of this thesis has been to investigate protection mechanisms
against attacks exploiting memory access errors in software. Our work was
initially motivated by the explosion in the number of computer worm attacks,
and their profound effect on networks. For that reason, our focus has always
been on techniques that can identify unknown attacks with a high-degree of
certainty, such as dynamic taint-analysis. Another primary concern of ours
has been to provide solutions that can be immediately applied on a variety of
existing systems, such as servers, desktops, and smartphones. This chapter
summarises our results, and offers a glance at possible future work directions.

6.1 Results

We can summarise the results of this thesis in the following points:

1. The Argos secure emulator (Chapter 3)

• Argos is able to detect attacks without any previous knowledge or
training, while at the same time not producing any false positives.

• It consists a heavyweight security solution, but it balances perfor-
mance with versatility, as it can be used to host next generation
high-interaction honeypots running unmodified OSs (Linux, Win-
dows 2000, Windows XP, BSD, etc) and applications.

• It analyses captured attacks, and is able to automatically generate
simple signatures for deployment on NIDS

• The generated signatures can be used with existing NIDSs such as
Snort, as well as our intrusion and detection system SweetBait.

2. Eudaemon (Chapter 3)

118 Conclusion

• We show that Eudaemon can almost instantly transform idle desk-
top machines to honeypots, thus overcoming the issue of honeypot
avoidance, and greatly increasing attack detection range.

• Dynamic taint analysis has been mainly used in non-production
environments such as honeypots. With Eudaemon, we show that
it can be also applied on production desktop systems, protecting
against client-side exploits, even if just for a short time.

• Eudaemon is able to automatically generate signatures for NIDSs,
similarly to Argos. When employed in a significant number of
nodes, the timely generation of signatures can protect entire com-
munities of systems.

3. Decoupled security for smartphones (Chapter 5)

• We are able to reproduce the execution of an Android-based smart-
phone on an Android emulator running on a remote server, while
reducing battery life no more than 7%.

• Replicating the execution of a smartphone, enables us to apply a
novel and versatile model of security by running diverse security
checks on the replica instead of the device.

• Replicating execution, transparently backs up a device’s settings
and content.

• Decoupling security checks from the smartphone, enables us to
constantly apply heavyweight protection methods, such as dy-
namic taint analysis, despite the resource constraints (battery,
CPU) of the device.

Additionally, Argos has become an important part of other network in-
trusion detection systems, i.e., SURFids, Honey@HOME, and SGNET.

6.2 Limitations and Future Work

Throughout this thesis we have used dynamic taint analysis for detecting
attacks. The method has its limitations on the type of attacks detected.
Consequently, none of the solutions we have implemented can protect against
memory access errors that instead of directly altering the control flow of a
program, modify a critical variable of the program (e.g., variable authorized
in Fig. 2.1).

The signature generators we have presented in Chapter 3, served the pur-
pose of demonstrating how Argos can be used at the heart of an automated

6.2 Limitations and Future Work 119

response system. The wealth of information made available by the virtualisa-
tion layer of Argos, grants us the ability to generate accurate signatures that
focus on the exploit vulnerability, instead of particular malware instances.
More research is needed in the generation of even more accurate and easily
deployable signatures, such as self-certifying alerts (SCAs). In particular, for
a system such as Eudaemon where untrusted nodes can generate signatures,
such a mechanism is essential for their safe distribution and deployment.

120 Conclusion

Bibliography

[1] P. Akritidis, C. Cadar, C. Raiciu, M. Costa, and M. Castro. Preventing
memory error exploits with wit. In SP ’08: Proceedings of the 2008
IEEE Symposium on Security and Privacy, pages 263–277, Washington,
DC, USA, 2008. IEEE Computer Society.

[2] P. Akritidis, W. Y. Chin, V. T. Lam, S. Sidiroglou, and K. G. Anagnos-
takis. Proximity breeds danger: emerging threats in metro-area wireless
networks. In SS’07: Proceedings of 16th USENIX Security Symposium
on USENIX Security Symposium, pages 1–16, Berkeley, CA, USA, 2007.
USENIX Association.

[3] Aleph One. Smashing the stack for fun and profit. Phrack Magazine,
7(49), November 1996.

[4] Alexa The Web Information Company. The top 500 sites on the web.
http://www.alexa.com/topsites.

[5] K. G. Anagnostakis, S. Sidiroglou, P. Akritidis, K. Xinidis, E. Markatos,
and A. D. Keromytis. Detecting targeted attacks using shadow
honeypots. In Proceedings of the 14th conference on USENIX Security
Symposium, pages 9–9, Berkeley, CA, USA, 2005. USENIX Association.

[6] anonymous. Runtime process infection. http://artofhacking.com/
files/phrack/phrack59/live/aoh p59-0x08.htm, July 2002.

[7] S. Antonatos, K. Anagnostakis, and E. Markatos. Honey@home: a new
approach to large-scale threat monitoring. In WORM ’07: Proceedings
of the 2007 ACM workshop on Recurring malcode, pages 38–45, New
York, NY, USA, 2007. ACM.

[8] P. Baecher, M. Koetter, M. Dornseif, and F. Freiling. The nepenthes
platform: An efficient approach to collect malware. In In Proceedings
of the 9th International Symposium on Recent Advances in Intrusion
Detection (RAID), pages 165–184. Springer, 2006.

http://www.alexa.com/topsites
http://artofhacking.com/files/phrack/phrack59/live/aoh_p59-0x08.htm
http://artofhacking.com/files/phrack/phrack59/live/aoh_p59-0x08.htm

122 BIBLIOGRAPHY

[9] M. Bailey, E. Cooke, F. Jahanian, D. Watson, and J. Nazario. The
blaster worm: Then and now. IEEE Security and Privacy, 3(4):26–31,
2005.

[10] T. Ball, E. Bounimova, B. Cook, V. Levin, J. Lichtenberg, C. McGar-
vey, B. Ondrusek, S. K. Rajamani, and A. Ustuner. Thorough static
analysis of device drivers. SIGOPS Oper. Syst. Rev., 40(4):73–85, 2006.

[11] V. R. Basili and B. T. Perricone. Software errors and complexity: an
empirical investigation0. Commun. ACM, 27(1):42–52, 1984.

[12] F. Bellard. QEMU, a fast and portable dynamic translator. In Proceed-
ings of the USENIX Annual Technical Conference, pages 41–46, April
2005.

[13] S. Bhansali, W.-K. Chen, S. D. Jong, A. Edwards, and M. Drinic.
Framework for instruction-level tracing and analysis of programs. In
Proceedings of the 2nd International Conference on Virtual Execution
Environments (VEE ’06), pages 154–163, Ottawa, Canada, June 2006.

[14] S. Bhatkar, D. C. Du Varney, and R. Sekar. Address obfuscation: an
efficient approach to combat a broad range of memory error exploits.
In In Proceedings of the 12th USENIX Security Symposium, pages 105–
120, August 2003.

[15] D. Bolzoni, E. Zambon, S. Etalle, P. Hartel, and mmanuele Zambon.
Poseidon: a 2-tier anomaly-based network intrusion detection system.
In In Proceedings of the 4th IEEE International Workshop on Informa-
tion Assurance (IWIA), April 2006.

[16] H. Bos, W. de Bruijn, M. Cristea, T. Nguyen, and G. Portokalidis.
FFPF: Fairly Fast Packet Filters. In Proceedings of OSDI’04, San Fran-
cisco, CA, December 2004.

[17] BrainStorm. Writing ELF parasitic code in C. http://vx.netlux.
org/lib/vbs00.html.

[18] D. Brumley, J. Newsome, D. Song, H. Wang, and S. Jha. Towards
automatic generation of vulnerability-based signatures. In Security and
Privacy, Oakland, CA, May 2006.

[19] bulba and Kil3r. Bypassing Stackguard and Stackshield. Phrack Mag-
azine, 0xa(0x38), May 2000.

http://vx.netlux.org/lib/vbs00.html
http://vx.netlux.org/lib/vbs00.html

BIBLIOGRAPHY 123

[20] W. R. Bush, J. D. Pincus, and D. J. Sielaff. A static analyzer for find-
ing dynamic programming errors. Software: Practice and Experience,
30(7):775–802, 2000.

[21] C. Cowan, C. Pu, D. Maier, J. Walpole, P. Bakke, S. Beattie, A. Grier,
P. Wagle and Q. Zhang. StackGuard: Automatic adaptive detection
and prevention of buffer-overflow attacks. In Proceedings of the 7th
USENIX Security Symposium, 1998.

[22] C. Cowan, M. Barringer, S. Beattie and G. Kroah-Hartman. Format-
Guard: Automatic protection from printf format string vulnerabilities.
In In Proceedings of the 10th Usenix Security Symposium, August 2001.

[23] C. Cowan, S. Beattie, J. Johansen and P. Wagle. PointGuard: Protect-
ing pointers from buffer overflow vulnerabilities. In In Proceedings of
the 12th USENIX Security Symposium, pages 91–104, August 2003.

[24] L. Cardelli. Typeful programming. Technical report, Digital Equipment
Corporation, 1989.

[25] M. Castro, M. Costa, and T. Harris. Securing software by enforcing
data-flow integrity. In OSDI ’06: Proceedings of the 7th symposium on
Operating systems design and implementation, pages 147–160, Berkeley,
CA, USA, 2006. USENIX Association.

[26] M. E. Chastain. Ioctl numbers. Linux Kernel Documentation -
ioctl-number.txt, October 1999.

[27] S. Chen, J. Xu, N. Nakka, Z. Kalbarczyk, and C. Verbowski. Defeat-
ing memory corruption attacks via pointer taintedness detection. In
DSN’05, pages 378–387, June 2005.

[28] J. Cheng, S. H. Wong, H. Yang, and S. Lu. Smartsiren: virus detection
and alert for smartphones. In MobiSys ’07, pages 258–271, New York,
NY, USA, 2007. ACM.

[29] J. Chow, T. Garfinkel, and P. M. Chen. Decoupling dynamic program
analysis from execution in virtual environments. In ATC’08: USENIX
2008, pages 1–14, Berkeley, CA, USA, 2008. USENIX Association.

[30] M. Conover. w00w00 on heap overflows. http://www.w00w00.org/
articles.html, January 1999.

[31] M. Corporation. Protect yourself from the conficker computer
worm. http://www.microsoft.com/protect/computer/viruses/
worms/conficker.mspx, Arpil 2009.

http://www.w00w00.org/articles.html
http://www.w00w00.org/articles.html
http://www.microsoft.com/protect/computer/viruses/worms/conficker.mspx
http://www.microsoft.com/protect/computer/viruses/worms/conficker.mspx

124 BIBLIOGRAPHY

[32] Coverity. Coverity software integrity solutions. http://www.coverity.
com.

[33] J. R. Crandall and F. T. Chong. Minos: Control data attack preven-
tion orthogonal to memory model. In Proceedings of the 37th annual
International Symposium on Microarchitecture, pages 221–232, Port-
land, Oregon, 2004.

[34] J. R. Crandall, S. F. Wu, and F. T. Chong. Experiences using Mi-
nos as a tool for capturing and analyzing novel worms for unknown
vulnerabilities. In Intrusion and Malware Detection and Vulnerabil-
ity Assessment: Second International Conference (DIMVA05), Vienna,
Austria, July 2005.

[35] Crispin Cowan, Calton Pu, Dave Maier, Heather Hintony, Jonathan
Walpole, Peat Bakke, Steve Beattie, Aaron Grier, PerryWagle and Qian
Zhang. StackGuard: Automatic Adaptive Detection and Prevention of
Buffer-Overflow Attacks. In 7th USENIX Security Symposium, San
Francisco, CA, 2002.

[36] W. Cui, V. Paxson, N. Weaver, and R. Katz. Protocol-independent
adaptive replay of application dialog. In The 13th Annual Network
and Distributed System Security Symposium (NDSS), San Diego, CA,
February 2006.

[37] W. Cui, V. Paxson, N. Weaver, and R. Katz. Protocol-independent
adaptive replay of application dialog. In The 13th Annual Network
and Distributed System Security Symposium (NDSS), San Diego, CA,
February 2006.

[38] D. Dagonand, X. Qin, G. Gu, W. Lee, J. Grizzard, J. Levine and Henry
Owen. HoneyStat: Local worm detection using honeypots. In In Pro-
ceedings of the 7th International Symposium on Recent Advances in
Intrusion Detection (RAID), 2004.

[39] D. Moore, C. Shannon and K. Claffy. Code-Red: A case study on
the spread and victims of an internet worm. In Proceedings of the 2nd
ACM/SIGCOMM Workshop on Internet measurement, 2002.

[40] D. Moore, V. Paxson, S. Savage, C. Shannon, S. Staniford and N.
Weaver. Inside the slammer worm. IEEE Security and Privacy, 1(4):33–
39, July 2003.

[41] W. de Bruijn, A. Slowinska, K. van Reeuwijk, T. Hruby, L. Xu, and
H. Bos. Safecard: a gigabit ips on the network card. In Proceedings of

http://www.coverity.com
http://www.coverity.com

BIBLIOGRAPHY 125

9th International Symposium on Recent Advances in Intrusion Detec-
tion (RAID’06), pages 311–330, Hamburg, Germany, September 2006.

[42] D. Denning. A lattice model of secure information flow. ACM Trans.
on Communications, 19(5):236–243, 1976.

[43] S. Designer. Openwall project. http://www.openwall.com/.

[44] P. Deutsch. DEFLATE compressed data format specification version
1.3. RFC 1951, May 1996.

[45] DiamondCS. Openports: Easy port analysis. http://diamondcs.com.
au/consoletools/openports.php.

[46] G. W. Dunlap, S. T. King, S. Cinar, M. A. Basrai, and P. M. Chen.
Revirt: enabling intrusion analysis through virtual-machine logging and
replay. In OSDI ’02, pages 211–224, New York, NY, USA, 2002. ACM.

[47] G. W. Dunlap, D. G. Lucchetti, M. A. Fetterman, and P. M. Chen.
Execution replay of multiprocessor virtual machines. In VEE ’08, pages
121–130, New York, NY, USA, 2008. ACM.

[48] E. G. Barrantes, D.H. Ackley, S. Forrest, T. S. Palmer, D. Stefanovix
and D.D. Zovi. Randomized instruction set emulation to disrupt code
injection attacks. In In Proceedings of the 10th ACM Conference on
Computer and Communications Security (CCS), pages 281–289, Octo-
ber 2003.

[49] eEye. eEye industry newsletter. http://www.eeye.com/html/
resources/newsletters/versa/VE20070516.html#techtalk, May
2007.

[50] F-Secure. ”sexy view” trojan on symbian s60 3rd edition. http://www.
f-secure.com/weblog/archives/00001609.html, February 2008.

[51] F-Secure. How big is downadup? Very big. http://www.f-secure.
com/weblog/archives/00001579.html, January 2009.

[52] C. Fetzer and M. Süßkraut. Switchblade: enforcing dynamic personal-
ized system call models. In Eurosys ’08: Proceedings of the 3rd ACM
SIGOPS/EuroSys European Conference on Computer Systems 2008,
pages 273–286, New York, NY, USA, 2008. ACM.

[53] G. C. Necula, S. McPeak, and W. Weimer. CCured: Type-safe
retrofitting of legacy code. In In Proceedings of the Principles of Pro-
gramming Languages (PoPL), January 2002.

http://www.openwall.com/
http://diamondcs.com.au/consoletools/openports.php
http://diamondcs.com.au/consoletools/openports.php
 http://www.eeye.com/html/resources/newsletters/versa/VE20070516.html#techtalk
 http://www.eeye.com/html/resources/newsletters/versa/VE20070516.html#techtalk
http://www.f-secure.com/weblog/archives/00001609.html
http://www.f-secure.com/weblog/archives/00001609.html
http://www.f-secure.com/weblog/archives/00001579.html
http://www.f-secure.com/weblog/archives/00001579.html

126 BIBLIOGRAPHY

[54] G. E. Suh, J. W. Lee, D. Zhang and S. Devadas. Secure program execu-
tion via dynamic information flow tracking. ACM SIGOPS Operating
Systems Review, 38(5):86–96, December 2004. SESSION: Security.

[55] G. W. Dunlap, S. T. King, S. Cinar, M. A. Basrai and P. M. Chen. Re-
Virt: Enabling intrusion analysis through virtual-machine logging and
replay. In In Proceedings of the 5th USENIX Symposium on Operating
Systems Design and Implementation (OSDI), 2002.

[56] T. Garfinkel and M. Rosenblum. A virtual machine introspection based
architecture for intrusion detection. In In Proceedings of the 10th ISOC
Symposium on Network and Distributed Systems Security (SNDSS),
February 2003.

[57] gera and riq. Advances in format string exploitation. Phrack Magazine,
0x0b(0x3b), July 2002.

[58] J. Giffin, S. Jha, and B. Miller. Efficient context-sensitive intrusion
detection. In 11th NDSS, San Diego, CA, February 2004.

[59] J. Gosling and H. McGilton. The Java Language Environment. SUN
Microsystems Computer Company, 1995.

[60] T. Guardian. Conficker is a lesson for MPs - especially over
ID cards. http://www.guardian.co.uk/technology/2009/apr/02/
conficker-parliament-security-charles-arthur, April 2009.

[61] L. Hatton. Reexamining the fault density component size connection.
IEEE Software, 14(2):89–97, 1997.

[62] H.Bos and K. Huang. Towards software-based signature detection for
intrusion prevention on the network card. In Proc of the 8th Interna-
tional Symposium on Recent Advances in Intrusion Detection (RAID),
2005.

[63] herm1t. Infecting ELF-files using function padding for Linux. http:
//vx.netlux.org/lib/vhe00.html.

[64] A. Ho, M. Fetterman, C. Clark, A. Warfield, and S. Hand. Practi-
cal taint-based protection using demand emulation. In EuroSys ’06:
Proceedings of the 1st ACM SIGOPS/EuroSys European Conference
on Computer Systems 2006, pages 29–41, New York, NY, USA, 2006.
ACM.

[65] W. W. Hsu and A. J. Smith. Characteristics of i/o traffic in personal
computer and server workloads. IBM Systems Journal, 42(2), 2003.

 http://www.guardian.co.uk/technology/2009/apr/02/conficker-parliament-security-c harles-arthur
 http://www.guardian.co.uk/technology/2009/apr/02/conficker-parliament-security-c harles-arthur
http://vx.netlux.org/lib/vhe00.html
http://vx.netlux.org/lib/vhe00.html

BIBLIOGRAPHY 127

[66] HTC. T-Mobile G1 - Technical Specification. http://www.htc.com/
www/product/g1/specification.html, 2009.

[67] G. C. Hunt, J. R. Larus, M. Abadi, M. Aiken, P. Barham, M. Fahn-
drich, C. Hawblitzel, O. Hodson, S. Levi, N. Murphy, B. Steensgaard,
D. Tarditi, T. Wobber, and B. Zill. An overview of the singularity
project. Microsoft research msr-tr-2005-135, Microsoft Corporation,
Redmond, Washington, Oct 2005.

[68] K. Hyang-Ah and B. Karp. Autograph: Toward automated, distributed
worm signature detection. In In Proceedings of the 13th USENIX Se-
curity Symposium, 2004.

[69] Intel Corporation. Basic Architecture, volume 1 of Intel Architecture
Software Developer’s Manual. Intel, 1997.

[70] Intel Corporation. System Programming Guide, volume 3 of Intel Ar-
chitecture Software Developer’s Manual. Intel, 1997.

[71] J. C. Rabek, R. I. Khazan, S. M. Lewandowski and R. K. Cunningham.
Detection of injected, dynamically generated, and obfuscated malicious
code. In In Proceedings of the ACM workshop on Rapid Malcode, 2003.

[72] J. Etoh. GCC extension for protecting applications from stack-
smashing attacks. Technical report, IBM, June 2000.

[73] B. Jack. Remote windows kernel exploitation - step into the ring
0. eEye Digital Security Whitepaper, www.eeye.com/∼data/publish/
whitepapers/research/OT20050205.FILE.pdf, 2005.

[74] X. Jiang and D. Xu. Collapsar: A VM-Based Architecture for Network
Attack Detention Center. In 13th USENIX Security Sumposium, pages
15–28, August 2004.

[75] T. Jim, G. Morrisett, D. Grossman, M. Hicks, J. Cheney, and Y. Wang2.
Cyclone: A safe dialect of C. In Proceedings of the USENIX 2002
Annual Technical Conference, pages 275–288, June 2002.

[76] N. Jovanovic, C. Kruegel, and E. Kirda. Pixy: A static analysis tool
for detecting web application vulnerabilities (short paper). Security and
Privacy, IEEE Symposium on, 0:258–263, 2006.

[77] J. Kannan and K. Lakshminarayanan. Implications of peer-to-peer
networks on worm attacks and defenses. Technical report, University
of California, Berkeley, 2003.

http://www.htc.com/www/product/g1/specification.html
http://www.htc.com/www/product/g1/specification.html
www.eeye.com/~data/publish/whitepapers/research/OT20050205.FILE.pdf
www.eeye.com/~data/publish/whitepapers/research/OT20050205.FILE.pdf

128 BIBLIOGRAPHY

[78] G. S. Kc, A. D. Keromytis, and V. Prevelakis. Countering code-
injection attacks with instruction-set randomization. In Proceedings of
the ACM Computer and Communications Security (CCS), pages 272–
280, Washingtion, DC, October 2003.

[79] H. Krawczyk, M. Bellare, and R. Canetti. RFC2104 HMAC: Keyed-
Hashing for Message Authentication. Network Working Group, Febru-
ary 1997.

[80] N. Krawetz. Anti-honeypot technology. IEEE Security and Privacy,
2(1):76–79, January 2004.

[81] C. Kreibich and J. Crowcroft. Honeycomb - creating intrusion detec-
tion signatures using honeypots. In 2nd Workshop on Hot Topics in
Networks (HotNets-II), 2003.

[82] B. Lampson. Accountability and freedom. In Cambridge Computer
Seminar, Cambridge, UK, October 2005.

[83] K. P. Lawton. Bochs: A portable pc emulator for unix/x. Linux J.,
page 7, 1996.

[84] G. Legg. The bluejacking, bluesnarfing, bluebugging blues:
Bluetooth faces perception of vulnerability. TechOnline
http://www.wirelessnetdesignline.com/showArticle.jhtml?
articleID=192200279, April 2005.

[85] C. Leita. SGNET : automated protocol learning for the observation of
malicious threats. PhD thesis, Thesis, December 2008.

[86] C. Leita, M. Dacier, and F. Massicotte. Automatic handling of pro-
tocol dependencies and reaction to 0-day attacks with scriptgen based
honeypots. In Proceedings of RAID’06, pages 185–205, Hamburg, Ger-
many, September 2006.

[87] J. Leyden. London hospital recovers from Conficker outbreak. The Reg-
ister, http://www.theregister.co.uk/2009/08/24/nhs hospital
conficker/, August 2009.

[88] M. Lipow. Number of faults per line of code. IEEE Transactions on
Software Engineering, SE-8(4):437–439, July 1982.

[89] M. E. Locasto, S. Sidiroglou, and A. D. Keromytis. Application com-
munities: Using monoculture for dependability. In Proceedings of the
1st Workshop on Hot Topics in System Dependability (HotDep), pages
288 – 292, Yokohama, Japan, June 2005.

http://www.wirelessnetdesignline.com/showArticle.jhtml?articleID=192200279
http://www.wirelessnetdesignline.com/showArticle.jhtml?articleID=192200279
http://www.theregister.co.uk/2009/08/24/nhs_hospital_conficker/
http://www.theregister.co.uk/2009/08/24/nhs_hospital_conficker/

BIBLIOGRAPHY 129

[90] M. E. Locasto, A. Stavrou, G. F. Cretu, and A. D. Keromytis. From
stem to sead: Speculative execution for automated defense. In Proceed-
ings of the 2007 USENIX Annual Technical Conference, pages 219–232,
June 2007.

[91] M. Costa, J. Crowcroft, M. Castro, A Rowstron, L. Zhou, L. Zhang and
P. Barham. Vigilante: End-to-end containment of internet worms. In
Proceedings of the 20th ACM Symposium on Operating Systems Prin-
ciples (SOSP), pages 1–68, Brighton, UK, October 2005. ACM.

[92] M. Mahoney, , M. V. Mahoney, and P. K. Chan. Phad: Packet header
anomaly detection for identifying hostile network traffic. Technical re-
port, Florida Institute of Technology, 2001.

[93] D. Malkhi and M. K. Reiter. Secure Execution of Java Applets Using
a Remote Playground. IEEE Trans. Softw. Eng., 26(12):1197–1209,
2000.

[94] D. Maynor and K. K. Mookhey. Metasploit Toolkit for Penetration
Testing, Exploit Development, and Vulnerability Research. Syngress,
2007.

[95] Microsoft. Binary technologies projects: Vulcan and nirvana. http:
//www.microsoft.com/windows/cse/bit projects.mspx.

[96] Microsoft. The C# language. http://msdn.microsoft.com/en-us/
vcsharp/aa336809.aspx.

[97] Microsoft. Microsoft security intelligence report (SIR) volume 7 Jan-
uary - June 2009.

[98] Microsoft. Phoenix compiler framework. http://research.
microsoft.com/phoenix/phoenixrdk.aspx.

[99] Y. Miretskiy, A. Das, C. P. Wright, and E. Zadok. Avfs: an on-access
anti-virus file system. In 13th USENIX Security, pages 6–6, Berkeley,
CA, USA, 2004. USENIX Association.

[100] H. Moore. Cracking the iphone (part 1). Available at http://blog.
metasploit.com/2007/10/cracking-iphone-part-1.html, October
2007.

[101] A. Moshchuk, T. Bragin, S. D. Gribble, and H. M. Levy. A crawler-
based study of spyware in the web. In Proceedings of NDSS’06, Febru-
ary 2006.

http://www.microsoft.com/windows/cse/bit_projects.mspx
http://www.microsoft.com/windows/cse/bit_projects.mspx
http://msdn.microsoft.com/en-us/vcsharp/aa336809.aspx
http://msdn.microsoft.com/en-us/vcsharp/aa336809.aspx
http://research.microsoft.com/phoenix/phoenixrdk.aspx
http://research.microsoft.com/phoenix/phoenixrdk.aspx
http://blog.metasploit.com/2007/10/cracking-iphone-part-1.html
http://blog.metasploit.com/2007/10/cracking-iphone-part-1.html

130 BIBLIOGRAPHY

[102] W. Mossberg. Newer, faster, cheaper iPhone 3G. Wall Street Journal,
July 2008.

[103] N. Dor, M. Rodeh, and M. Sagiv. CSSV: Towards a realistic tool
for statically detecting all buffer overlows in C. In In Proceedings of
the ACM Conference on Object-Oriented Programming, Systems, Lan-
guages and Application, October 2003.

[104] S. Narayanasamy, G. Pokam, and B. Calder. Bugnet: Continuously
recording program execution for deterministic replay debugging. In
ISCA ’05, pages 284–295, Washington, DC, USA, 2005. IEEE Com-
puter Society.

[105] N. Nethercote and J. Seward. Valgrind: a framework for heavyweight
dynamic binary instrumentation. SIGPLAN Not., 42(6):89–100, June
2007.

[106] J. Newsome, D. Brumley, J. Franklin, and D. Song. Replayer: auto-
matic protocol replay by binary analysis. In CCS ’06: Proceedings of
the 13th ACM conference on Computer and communications security,
pages 311–321, New York, NY, USA, 2006. ACM Press.

[107] J. Newsome and D. Song. Dynamic taint analysis for automatic de-
tection, analysis, and signature generation of exploits on commodity
software. In Proceedings of the 12th Annual Network and Distributed
System Security Symposium (NDSS), 2005.

[108] Niacin and Dre. The iphone / itouch tif exploit is now officially released.
Available at http://toc2rta.com/?q=node/23, October 2007.

[109] P. Nylokken. Automated defacement through search engines, February
2007.

[110] J. Oberheide, E. Cooke, and F. Jahanian. Cloudav: N-version antivirus
in the network cloud. In 17th USENIX Security Symposium, San Jose,
CA, July 2008.

[111] J. Oberheide, K. Veeraraghavan, E. Cooke, J. Flinn, and F. Jahania.
Virtualized in-cloud security services for mobile devices. In Proceedings
of MobiVirt, Breckenridge, CO, June 2008.

[112] oCERT. CVE-2009-0475: #2009-002 opencore insufficient boundary
checking during mp3 decoding. http://www.ocert.org/advisories/
ocert-2009-002.html, January 2009.

http://toc2rta.com/?q=node/23
http://www.ocert.org/advisories/ocert-2009-002.html
http://www.ocert.org/advisories/ocert-2009-002.html

BIBLIOGRAPHY 131

[113] A. Orebaugh, G. Ramirez, J. Burke, and J. Beale. Wireshark & Ethe-
real network protocol analyzer toolkit. Jay Beale’s open source security
series. Syngress, 2007.

[114] T. J. Ostrand and E. J. Weyuker. The distribution of faults in a large
industrial software system. In ISSTA ’02: Proceedings of the 2002 ACM
SIGSOFT international symposium on Software testing and analysis,
pages 55–64, New York, NY, USA, 2002. ACM.

[115] T. J. Ostrand, E. J. Weyuker, and R. M. Bell. Where the bugs are.
In ISSTA ’04: Proceedings of the 2004 ACM SIGSOFT international
symposium on Software testing and analysis, pages 86–96, New York,
NY, USA, 2004. ACM.

[116] A. Ozment and S. E. Schechter. Milk or wine: Does software security
improve with age? In 15th USENIX Security Symposium, Vancouver,
BC., July 2006.

[117] D. Pauli. Number of viruses to top 1 million by 2009.
Computer World http://www.networkworld.com/news/2008/
040408-number-of-viruses-to-top.html, May 2008.

[118] PaX Team. Pax. http://pax.grsecurity.net/.

[119] V. Paxson. Bro: A system for detecting network intruders in real-time.
In Computer Networks, pages 2435–2463, 1998.

[120] M. Polychronakis, K. G. Anagnostakis, and E. P. Markatos. Emulation-
based detection of non-self-contained polymorphic shellcode. In RAID,
pages 87–106, 2007.

[121] G. Portokalidis and H. Bos. SweetBait: Zero-Hour Worm Detection and
Containment Using Honeypots, (An extended version of this report was
accepted by Elsevier Journal on Computer Networks, Special Issue on
Security through Self-Protecting and Self-Healing Systems), TR IR-CS-
015. Technical report, Vrije Universiteit Amsterdam, May 2005.

[122] T. W. Post. Web browser vulnerabilities calenda. http:
//www.washingtonpost.com/wp-srv/technology/interactives/
browsers/, February 2006.

[123] N. Provos. Improving host security with system call policies. In 12th
USENIX Security Symposium, 2003.

[124] N. Provos. A virtual honeypot framework. In Proceedings of the 13th
USENIX Security Symposium, 2004.

 http://www.networkworld.com/news/2008/040408-number-of-viruses-to-top.html
 http://www.networkworld.com/news/2008/040408-number-of-viruses-to-top.html
http://pax.grsecurity.net/
http://www.washingtonpost.com/wp-srv/technology/interactives/browsers/
http://www.washingtonpost.com/wp-srv/technology/interactives/browsers/
http://www.washingtonpost.com/wp-srv/technology/interactives/browsers/

132 BIBLIOGRAPHY

[125] J. Richter. Load your 32-bit dll into another process’s address space
using injlib. Microsoft Systems Journal (MSJ), January 1996.

[126] rix. Smashing C++ VPTRS. Phrack Magazine, 0xa(0x38), May 2000.

[127] M. Roesch. Snort - lightweight intrusion detection for networks. In LISA
’99: Proceedings of the 13th USENIX conference on System administra-
tion, pages 229–238, Berkeley, CA, USA, 1999. USENIX Association.

[128] M. Roesch. Snort - lightweight intrusion detection for networks. In Pro-
ceedings of LISA ’99: 13th Systems Administration Conference, 1999.

[129] O. Ruwase and M. S. Lam. A practical dynamic buffer overflow detec-
tor. In Proceedings of the 11th NDSS, pages 159–169, 2004.

[130] S. Singh, C. Estan, G. Varghese and S. Savage. Automated worm
fingerprinting. In In Proceedings of the 6th USENIX Symposium on
Operating Systems Design and Implementation (OSDI), pages 45–60,
2004.

[131] SANS. Sans institute press update. http://www.sans.org/top20/
2006/press release.pdf, 2006.

[132] B. Schneier and J. Kelsey. Cryptographic support for secure logs on
untrusted machines. In 7th USENIX Security Symposium, pages 4–4,
Berkeley, CA, USA, 1998. USENIX Association.

[133] B. Schneier and J. Kelsey. Secure audit logs to support computer foren-
sics. ACM TISSEC, 2(2):159–176, 1999.

[134] H. Shacham, M. Page, B. Pfaff, E. Goh, and N. Modadugu. On the
effectiveness of address-space randomization. In Proceedings of the
11th ACM conference on Computer and communications security, pages
298–307. ACM, 2004.

[135] S. Sidiroglou, M. Locasto, S. Boyd, and A. Keromytis. Building a
reactive immune system for software services. In Proceedings of the
2005 USENIX Annual Technical Conference, 2005.

[136] A. Slowinska and H. Bos. The age of data: pinpointing guilty bytes in
polymorphic buffer overflows on heap or stack. In 23rd Annual Com-
puter Security Applications Conference (ACSAC’07), Miami, FLA, De-
cember 2007.

http://www.sans.org/top20/2006/press_release.pdf
http://www.sans.org/top20/2006/press_release.pdf

BIBLIOGRAPHY 133

[137] A. Slowinska and H. Bos. Pointless tainting? evaluating the practicality
of pointer tainting. In Proceedings of EUROSYS 2009, Nuremberg,
Germany, March-April 2009.

[138] D. Spyrit. Win32 buffer overflows (location, exploitation, and preven-
tion). Phrack Magazine, 9(55), September 1999.

[139] V. P. Stuart Staniford and N. Weaver. How to 0wn the internet in your
spare time. In Proceedings of the 11th USENIX Security Symposium,
2002.

[140] W. Sun, Z. Liang, R. Sekar, and V. N. Venkatakrishnan. One-way
Isolation: An Effective Approach for Realizing Safe Execution Envi-
ronments. In SNDSS, pages 265–278, February 2005.

[141] SURFnet. SURFids. http://ids.surfnet.nl.

[142] Symantec. W32.sasser.worm. http://www.symantec.com/security
response/writeup.jsp?docid=2004-050116-1831-99, 2004.

[143] P. Szor and P. Ferrie. Hunting for metamorphic. In Virus Bulletin
Conference, pages 123–144, Abingdon, Oxfordshire, England, Septem-
ber 2001.

[144] The Register. Microsoft security report shows worms are re-
turning. http://www.theregister.co.uk/2009/11/02/microsoft
security report/, November 2009.

[145] N. Times. Black market in stolen credit card data thrives on in-
ternet. http://www.nytimes.com/2005/06/21/technology/21data.
html? r=1, June 2005.

[146] J. Tucek, S. Lu, C. Luang, S. Xanthos, Y. Zhou, J. Newsome, D. Brun-
mley, and D. Song. Sweeper:a light-weight end-to-end system for de-
fending against fast worms. In Proceedings of Eurosys 2007, Lisbon,
Portugal, April 2007.

[147] U. Shankar, K. Talwar, J. S. Foster, and D. Wagner. Detecting format
string vulnerabilities with type qualifiers. In In Proceedings of the 10th
USENIX Security Symposium, pages 201–216, August 2001.

[148] V. Kiriansky, D. Bruening and S. Amarasinghe. Secure execution via
program shepherding. In In Proceedings of the 11th USENIX Security
Symposium, 2002.

http://ids.surfnet.nl
 http://www.symantec.com/security_response/writeup.jsp?docid=2004-050116-1831-99
 http://www.symantec.com/security_response/writeup.jsp?docid=2004-050116-1831-99
http://www.theregister.co.uk/2009/11/02/microsoft_security_report/
http://www.theregister.co.uk/2009/11/02/microsoft_security_report/
http://www.nytimes.com/2005/06/21/technology/21data.html?_r=1
http://www.nytimes.com/2005/06/21/technology/21data.html?_r=1

134 BIBLIOGRAPHY

[149] G. Vasiliadis, S. Antonatos, M. Polychronakis, E. P. Markatos, and
S. Ioannidis. Gnort: High performance network intrusion detection
using graphics processors. In RAID ’08: Proceedings of the 11th inter-
national symposium on Recent Advances in Intrusion Detection, pages
116–134, Berlin, Heidelberg, 2008. Springer-Verlag.

[150] Vendicator. StackShield. http://www.angelfire.com/sk/
stackshield, January 2001.

[151] J. Viega, J. Bloch, Y. Kohno, and G. McGraw. ITS4: a static vul-
nerability scanner for C and C++ code. In ACSAC ’00. 16th Annual
Conference, pages 257–267, December 2000.

[152] M. Vrable, J. Ma, J. Chen, D. Moore, E. Vandekieft, A. C. Snoeren,
G. M. Voelker, and S. Savage. Scalability, fidelity, and containment in
the potemkin virtual honeyfarm. In SOSP’05, pages 148–162, 2005.

[153] K. Wang and S. J. Stolfo. Anomalous payload-based network intrusion
detection. In In Proceedings of the 7th International Symposium on
Recent Advances in Intrusion Detection (RAID, pages 203–222, 2004.

[154] X. Wang, Z. Li, J. Xu, M. K. Reiter, C. Kil, and J. Y. Choi. Packet
vaccine: black-box exploit detection and signature generation. In CCS
’06: Proceedings of the 13th ACM conference on Computer and com-
munications security, pages 37–46, New York, NY, USA, 2006. ACM
Press.

[155] Y.-M. Wang, D. Beck, X. Jiang, R. Roussev, C. Verbowski, S. Chen,
and S. King. Automated web patrol with strider honeymonkeys: Find-
ing web sites that exploit browser vulnerabilities. In Proceedings Net-
work and Distributed System Security (NDSS), San Diego, CA, Febru-
ary 2006.

[156] B. R. Waters, D. Balfanz, G. Durfee, and D. K. Smetters. Building an
encrypted and searchable audit log. In NDSS’04, 2004.

[157] S. M. B. William R. Cheswick, Aviel D. Rubin. Firewalls and Internet
Security: repelling the wily hacker (2nd ed.). Addison-Wesley, ISBN
020163466X, 2003.

[158] M. M. Williamson. Throttling Viruses: Restricting Propagation to De-
feat Malicious Mobile Code. In Proceedings of ACSAC Security Con-
ference, Las Vegas, Nevada, 2002.

http://www.angelfire.com/sk/stackshield
http://www.angelfire.com/sk/stackshield

BIBLIOGRAPHY 135

[159] M. Xu, R. Bodik, and M. D. Hill. A flight data recorder for enabling
full-system multiprocessor deterministic replay. In ISCA ’03, pages
122–135, New York, NY, USA, 2003. ACM.

[160] M. Zitser, R. Lippmann, and T. Leek. Testing static analysis tools
using exploitable buffer overflows from open source code. SIGSOFT
Softw. Eng. Notes, 29(6):97–106, 2004.

[161] M. Zitser, R. Lippmann, and T. Leek. Testing static analysis tools
using exploitable buffer overflows from open source code. SIGSOFT
Softw. Eng. Notes, 29(6):97–106, 2004.

[162] C. C. Zou and R. Cunningham. Honeypot-aware advanced botnet con-
struction and maintenance. In The International Conference on De-
pendable Systems and Networks (DSN-2006), Philadelphia, PA, USA,
June 2006.

136 BIBLIOGRAPHY

Publications

Parts of Chapter 3 have been published in the ACM SIGOPS EuroSys 20061.

Parts of Chapter 4 have been published in the ACM SIGOPS EuroSys 20082.

Parts of Chapter 5 are under submission for publication.

1Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed for
prot or commercial advantage and that copies bear this notice and the full citation on
the rst page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specic permission and/or a fee. EuroSys06, April 1821, 2006, Leuven,
Belgium. Copyright 2006 ACM 1-59593-322-0/06/0004 ...$5.00.

2Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed for
prot or commercial advantage and that copies bear this notice and the full citation on the rst
page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires
prior specic permission and/or a fee. EuroSys08, April 14, 2008, Glasgow, Scotland, UK.
Copyright 2008 ACM 978-1-60558-013-5/08/04 ...$5.00.

138 Publications

Sammenvatting

Titel: Bescherming Tegen Nieuwe Internet Aanvallen met Behulp
van Virtualisatie

Besturingssystemen, en software in het algemeen, nemen voortdurend toe
in omvang en complexiteit. Als gevolg hiervan bevat software programmeer-
fouten die er vaak toe leiden dat via een aanval illegaal toegang of zelfs
volledige controle kan worden verkregen over systemen. In het verleden
hebben we besmettingen op grote schaal gezien van wormen zoals CodeRed,
Blaster, en Sasser [39, 9, 142], die honderdduizenden hosts hebben weten
te infecteren. De Slammer [40] worm was fenomenaal snel en infecteerde
bijna alle kwetsbare servers binnen enkele minuten. Recent hebben we gezien
hoe aanvallers bugs in populaire applicaties zoals web browsers misbruiken
en de controle overnemen. De gekraakte systemen werden gecombineerd tot
grootschalige netwerken die gebruikt werden voor het verzenden van spam
email, het uitvoeren van distributed denial of service (DDoS) aanvallen en
het verkrijgen van persoonsinformatie zoals credit card gegevens en wacht-
woorden.

De praktijk wijst uit dat bestaande oplossingen onvoldoende zijn om aan-
vallen te detecteren en op tijd tegenmaatregelen te treffen. Deze dissertatie
adresseert het automatisch en betrouwbaar detecteren van voorheen onbeke-
nde aanvallen en het genereren van vaccins om nieuwe infecties tegen te gaan
in het beginstadium. We presenteren drie nieuwe methodes om virtualisatie te
gebruiken voor het detecteren van zero-day aanvallen en het automatisch ne-
men van tegenmaatregelen. Onze oplossingen zijn gebaseerd op een techniek
genaamd dynamische smet analyse, of, in het engels, ‘dynamic taint analysis’.
Dynamic taint analysis volgt het pad van data door een computersysteem,
door alle interacties van data met het systeem te merken. (Hoofdstuk 2.3.4
beschrijft de methode in detail). Zeer belangrijk is dat deze oplossingen kun-
nen worden toegepast op bestaande hardware en software, en dat geen valse
meldingen worden gegenereerd. Deze methode gebruiken we om het pad van
zelfverspreidende aanvallen te volgen en te onderscheppen.

Netwerkgegevens worden praktisch nooit gebruikt om de uitvoering van

140 Sammenvatting

een programma direct te bëınvloeden. Zo worden bijvoorbeeld netwerkwaar-
den niet gebruikt als pointers naar een functie. Aanvallers misbruiken vaak
geheugencorruptiefouten om de uitvoering van programmas te bëınvloeden,
bijvoorbeeld door middel van deze functiepointers. Dynamic taint analysis
detecteert wanneer op deze manier gebruik wordt gemaakt van netwerkgege-
vens en kan zo pogingen tot misbruik identificeren. Het implementeren van
deze techniek in de software vereist het gebruik van een virtualisatielaag, zoals
een emulator of een dynamisch ‘binary translation framework’, wat vaak leidt
tot een significante vertraging van 1000%-2000%. Deze dissertatie heeft als
duel het toepassen van DTA mogelijk te maken op bestaande systemen. Onze
doelstellingen kunnen worden samengevat in de volgende onderzoeksvragen:

• is het mogelijk om oplossingen te vinden voor het detecteren van zo-
genaamde zero-day nieuwe aanvallen, door middel van het dynamisch
volgen van gegevensstromen, in onaangepaste software en zonder toe-
gang tot broncode of gespecialiseerde hardware?

• kunnen we de performance overhead van het dynamisch volgen van
gegevensstromen mitigeren, zodanig dat onze oplossingen schaalbaar
zijn naar diverse computersystemen zoals servers, desktops en smart-
phones?

Hoofdstukken drie tot en met vijf bevatten de kern-contributies van dit proef-
schrift.

Argos Hoofdstuk 3 presenteert een veilige emulator genaamd Argos. Argos
is een platform voor de volgende generatie van hoge-interactie honeypots
die de procedure van het vangen van zero-day aanvallen automatiseren en
een simpel vaccin genereren voor netwerk inbraak detectie systemen (‘net-
work intrusion detection systems’, of NIDS). Het biedt bescherming van het
gehele systeem in software door middel van een aangepaste x86 emulator
die onze eigen versie van dynamic taint analysis uitvoert [107]. Argos kan
elk (onaangepast) besturingssysteem beschermen, inclusief bijbehorende pro-
cessen en device drivers. Argos houdt rekening met complexe geheugenop-
eraties, zoals memory mapping en DMA, welke meestal genegeerd worden
bij vergelijkbare projecten. Het kan aanvallen zoals buffer overflow en for-
mat string / code injection exploits detecteren en waarschuwingen afgeven
die resulteren in automatische generatie van virus definities gebaseerd op de
correlatie van de geheugen afdruk van de aanval en haar netwerk log. Nadat
een aanval is gedetecteerd, voegen we een besturingssysteem-specifiek foren-
sisch stuk code in om additionele informatie te verzamelen over de code van
de aanval. Tot slot, door het vergelijken van definities van meerdere sites,

141

verfijnen we de gegenereerde definities automatisch en distribueren deze naar
netwerk inbraak-detectie en -preventie systemen (IDS en IPS).

Eudaemon In Hoofdstuk 4 hebben we een techniek ontwikkeld om op
transparante en veilige wijze desktopsystemen te laten fungeren als honeypots.
Eudaemon stelt zich tot doel om de grenzen tussen beschermde en onbescher-
mde applicaties te vervagen, en combineert honeypot-technologie met eindge-
bruiker inbraak-detectie en -preventie. Het kan zich hechten aan elk lopend
proces en de uitvoering verplaatsen naar een user-space emulator die de
applicatie emuleert en taint analysis uitvoert. Zo lang de doel applicatie
wordt geemuleerd zullen alle pogingen om de uitvoering te bëınvloeden, of om
kwaadwillende code in te voegen, gedetecteerd en gemitigeerd worden. Indien
gewenst kan Eudaemon zichzelf opnieuw hechten aan het geemuleerde proces
en de uitvoering teruggeven aan de oorspronkelijke niet-geemuleerde proces.
Het kan elke applicatie schakelan van beschermde naar native modus, bijvoor-
beeld wanneer vrije cycles beschikbaar zijn, wanneer beveiligingsbeleid dat
vereist, of indien dit expliciet wordt gevraagd. De transitie wordt transparant
uitgevoerd en in zeer korte tijd, waardoor minimale verstoring optreedt in een
actief gebruikt systeem. Net als Argos heeft het geen toegang nodig tot bron-
code of expliciete ondersteuning van het besturingssysteem, en is het in staat
om virusdefinities te genereren voor NIDS.

Marvin In Hoofdstuk 5 onderzoeken we hoe mobiele apparaten zoals smart-
phones beschermd kunnen worden, door middel van het delegeren van veili-
gheidscontroles naar een zwak gesynchroniseerde replica van de software op
een krachtiger machine. Smartphones zijn meer en meer op PCs gaan lijken
in softwarecomplexiteit, waarbij deze complexiteit weer heeft geleid tot bugs
en veiligheidslekken. Bovendien worden deze apparaten steeds meer gebruikt
voor financiële transacties en andere privacygevoelige taken, waardoor ze een
aantrekkelijk doelwit worden voor aanvallers. Smartphones verschillen echter
van PCs in termen van de beperkte resources die beschikbaar zijn voor het
ontwerp van beschermingsmechanismen, aangezien de batterij duur schaars
is. Hierdoor zijn beveiligingsoplossingen die voor PCs zijn ontwikkeld niet
direct toepasbaar op smartphones. Het outsourcen van veiligheidscontroles
maakt complexe veiligheidscontroles zoals dynamic taint-analyis haalbaar, en
tegelijkertijd transparante backup functionaliteit mogelijk. We hebben een
prototype geimplementeerd genaamd Marvin op de HTC Dream / Android
G1 en laten zien dat de extra kosten in termen van rekentijd en stroom-
verbruik acceptabel zijn.

142 Sammenvatting

	Contents
	List of Figures
	List of Tables
	Acknowledgements
	Introduction
	The Problem
	Goals
	Contributions
	Thesis Organisation

	Background
	Software Errors
	Buffer Overflows
	Format String Errors

	Attacks
	Attack Types
	Self-propagating Malware
	Payload

	Defences
	Safe Programming Languages
	Compiler Extensions
	Static Analysis
	Dynamic Analysis
	Honeypots
	Network Intrusion Detection & Prevention Systems
	Operating Systems

	Argos Secure Emulator
	Introduction
	Related Work
	Design
	Implementation
	Extended Dynamic Taint Analysis
	Signature Generation

	Evaluation
	Performance
	Effectiveness
	Signatures

	Systems Using Argos
	Conclusion

	Eudaemon: On-demand Protection of Production Systems
	Introduction
	Related Work
	Design
	Process Possession
	Process Release
	Emulator Library

	Implementation
	SEAL: A Secure Emulator Library
	Possession and Release

	Evaluation
	SEAL
	Eudaemon

	Conclusions

	Decoupled Security for Smartphones
	Introduction
	Threat Model and Example Configuration
	Architecture
	A Naive Implementation: Sketching the Basic Idea
	Location of the Security Server
	When to Transmit Trace Data
	Notifying the User of an Attack

	Recording in Practice
	Tracing on Android
	Pruning Redundant Data: Trimming the Trace
	Secure Storage
	Local Data Generation

	The Security Server
	Results
	Data Generation Rate
	Battery Consumption
	Performance
	Security Server Lag

	Related Work
	Conclusion

	Conclusion
	Results
	Limitations and Future Work

	Bibliography
	Publications
	Sammenvatting

